
EMMAA Documentation
Release 1.16.0

EMMAA developers

Jul 01, 2021

Contents

1 EMMAA Architecture and Approach 1
1.1 Model Assembly and Updates . 2

1.1.1 Cancer types of interest . 2
1.1.2 Model availability . 3
1.1.3 Defining model scope . 3
1.1.4 Deriving relevant terms for a given type of cancer . 3
1.1.5 Updating the network . 4
1.1.6 Machine-reading . 4
1.1.7 Automated incremental assembly . 4

1.2 Meta-Model . 5
1.2.1 Initial specification of annotation guidelines . 6
1.2.2 EMMAA currently supports “does X. . . ” queries for PySB models 6
1.2.3 Annotations required for “what if” queries . 7
1.2.4 Annotations required for open-ended “relevance” queries 7

1.3 Model Testing and Analysis . 7
1.3.1 Model test cycle deployed on AWS . 8
1.3.2 Test conditions generated automatically . 8
1.3.3 General EMMAA model testing framework . 9
1.3.4 Model queries from users . 10
1.3.5 Pre-registered queries and notifications . 10

1.4 Model Analysis Query Language . 11
1.4.1 Structural properties with constraints . 11
1.4.2 Path properties with constraints . 13
1.4.3 Simple intervention properties . 14
1.4.4 Comparative intervention properties . 14

2 EMMAA Dashboard 17
2.1 EMMAA Models Page . 18

2.1.1 Link to statement details . 18
2.1.2 Model Tab . 18
2.1.3 Tests Tab . 18
2.1.4 Papers Tab . 20
2.1.5 Curation Tab . 20
2.1.6 Load Previous State of Model . 26

2.2 EMMAA Statement Evidence Page . 26
2.3 EMMAA All Statements Page . 28

i

2.4 EMMAA Individual Paper Page . 28
2.5 EMMAA Model Queries . 29

2.5.1 Which query type do I need? . 29
2.5.2 Source-target paths queries . 30
2.5.3 Source-target dynamics queries . 31
2.5.4 Temporal properties queries . 31
2.5.5 Up/down-stream paths queries . 33
2.5.6 Waiting for results . 34
2.5.7 Logging In and Registering a User . 34
2.5.8 Subscribing to a Query . 35
2.5.9 Email Notifications of Subscribed Queries . 35

2.6 Failing test/query result interpretation . 36
2.7 EMMAA Detailed Test or Query Results . 39

2.7.1 Results for Different Model Types . 39
2.7.2 Non-passing Tests . 40

3 EMMAA modules reference 41
3.1 EMMAA Statement (emmaa.statements) . 41
3.2 EMMAA Model (emmaa.model) . 42
3.3 EMMAA Model Test Framework (emmaa.model_tests) . 48
3.4 Analyze model test results (emmaa.analyze_tests_results) 51
3.5 Query classes (emmaa.queries) . 55
3.6 Process model queries (emmaa.answer_queries) . 57
3.7 Priors (emmaa.priors) . 58

3.7.1 Literature Prior (emmaa.priors.literature_prior) 58
3.7.2 TCGA Cancer Prior (emmaa.priors.cancer_prior) 59
3.7.3 Gene List Prior (emmaa.priors.gene_list_prior) 60
3.7.4 Reactome Prior (emmaa.priors.reactome_prior) 60
3.7.5 Querying Prior Statements (emmaa.priors.prior_stmts) 61

3.8 Readers (emmaa.readers) . 61
3.8.1 AWS reader (emmaa.readers.aws_reader) . 61
3.8.2 INDRA DB client reader (emmaa.readers.db_client_reader) 62

3.9 EMMAA’s Database (emmaa.db) . 62
3.9.1 The Database Schema (emmaa.db.schema) . 62
3.9.2 Database Manager (emmaa.db.manager) . 64

3.10 AWS model update and testing pipeline (emmaa.aws_lambda_functions) 66
3.11 xDD client . 72
3.12 EMMAA’s Subscription Service (emmaa.subscription) . 72

3.12.1 Notifications functions (emmaa.subscription.notifications) 72
3.12.2 Email Service (emmaa.subscription.email_service) 75
3.12.3 Email Utilities (emmaa.subscription.email_util) 77

3.13 Utilities (emmaa.util) . 78
3.14 Functions for node and edge filtering (emmaa.filter_functions) 80

4 Configuring an EMMAA model 81
4.1 First level fields of config.json . 81
4.2 Model update configuration . 83
4.3 Model testing configuration . 84
4.4 Model queries configuration . 85
4.5 Making tests from model configuration . 86

5 ASKE Reports 89
5.1 ASKE Month 5 Milestone Report: Lessons Learned . 89

5.1.1 Automated model assembly: the challenge of defining scope and context 89

ii

5.1.2 Automated model analysis: benefits of automated model validation 90
5.1.3 Test-driven modeling . 91
5.1.4 Exploiting the bidirectional relationship between models and tests 94

5.2 ASKE Month 6 Milestone Report . 94
5.2.1 Making model analysis and model content fully auditable 94
5.2.2 Including new information based on relevance . 95
5.2.3 Coarse-grained model checking of EMMAA models with directed graphs 95

5.3 ASKE Month 7 Milestone Report . 97
5.3.1 Repositioning EMMAA within the ASKE framework of modeling layers 97
5.3.2 Use cases for the EMMAA system (and ASKE systems in general) 98

5.4 ASKE Month 9 Milestone Report . 99
5.4.1 Generalizing EMMAA: a proof-of-principle model of food insecurity 99
5.4.2 Extending model testing and analysis to multiple resolutions 100
5.4.3 Implementing an object model for model analysis queries 100
5.4.4 Detecting changes in analysis results due to model updates 101

5.5 ASKE Month 11 Milestone Report . 101
5.5.1 Deployment of multiple-resolution model testing and analysis 101
5.5.2 User-specific query registration and subscription . 104
5.5.3 An improved food insecurity model . 104

5.6 ASKE Month 13 Milestone Report . 106
5.6.1 Related work for the EMMAA system . 106
5.6.2 System performance statistics . 106

5.7 ASKE Month 15 Milestone Report . 110
5.7.1 EMMAA Knowledge assemblies as alternative test corpora 110
5.7.2 Time machine . 111
5.7.3 Dynamical model simulation and testing . 112
5.7.4 Towards push science: User notifications of newly-discovered query results 113

5.8 ASKE Month 18 Milestone Report . 113
5.8.1 Expert curation of models on the EMMAA dashboard . 113
5.8.2 Viewing and ranking all statements in a model . 113
5.8.3 Email notifications . 114
5.8.4 A model of Covid-19 . 114
5.8.5 Integration of content from UW xDD system . 115
5.8.6 Configurable model assembly pipeline . 115

6 ASKE-E Reports 117
6.1 ASKE-E Month 1 Milestone Report . 117

6.1.1 Overall goals and use cases for the Bio Platform . 117
6.1.2 Integration plan for the Bio Platform . 117
6.1.3 Progress during the ASKE-E Hackathon . 118
6.1.4 Open Search model queries and notifications . 119

6.2 ASKE-E Month 2 Milestone Report . 120
6.2.1 Push science: EMMAA models tweet new discoveries and explanations 120
6.2.2 Improving named entity recognition in text mining integrated with EMMAA models 122
6.2.3 Making model tests and paths available for use by other applications 122

6.3 ASKE-E Month 4 Milestone Report . 122
6.3.1 EMMAA Neurofibromatosis Models and NF Hackathon Prize 122
6.3.2 Rapid initialization of EMMAA models from literature for two new diseases 123
6.3.3 Downloading EMMAA models in alternative formats . 123

6.4 ASKE-E Month 5 Milestone Report . 124
6.4.1 Semantic filters to improve model analysis . 124
6.4.2 Model analysis exploiting ontological relationships . 124
6.4.3 Improved reading and assembly of protein chains and fragments 125
6.4.4 Bio ontology optimized for visualization . 125

iii

6.5 ASKE-E Month 6 Milestone Report . 126
6.5.1 Reading and assembly with context-aware organism prioritization 126
6.5.2 Preparing for the stakeholder meeting . 126
6.5.3 Reporting curation statistics . 127
6.5.4 Reporting paper level statistics . 129
6.5.5 Integrating non-textual evidence with EMMAA models . 130

6.6 ASKE-E Month 7 Milestone Report . 130
6.6.1 Natural language dialogue interaction with EMMAA models 130
6.6.2 Automatically generated text annotations in context . 133
6.6.3 Demonstrations at the stakeholder meeting . 134
6.6.4 Developing the EMMAA REST API for flexible integration 135

6.7 ASKE-E Month 9 Milestone Report . 136
6.7.1 Integrating the COVID-19 Disease Map community model 136
6.7.2 Notifications about general model updates . 140
6.7.3 Figures and tables from xDD as non-textual evidence for model statements 140
6.7.4 Integration with the Uncharted UI . 141
6.7.5 Semantic separation of model sources for analysis and reporting 141
6.7.6 Assembling and analyzing dynamical models . 142
6.7.7 Creating a training corpus for identifying causal precedence in text 142
6.7.8 Knowledge/model curation using BEL annotations . 143
6.7.9 Formalizing EMMAA model configuration . 143

6.8 ASKE-E Month 10 Milestone Report . 143
6.8.1 Dynamical model analysis . 143
6.8.2 Improved EMMAA query UI and REST API . 148
6.8.3 Network representation learning for EMMAA models . 148

6.9 ASKE-E Month 11 Milestone Report . 155
6.9.1 Integration with ASKE modeling frameworks . 155
6.9.2 BioCreative participation . 155
6.9.3 Improving the EMMAA model query interface . 156
6.9.4 Improving the EMMAA statement browser . 156
6.9.5 Using custom belief scorers for EMMAA models . 156
6.9.6 Developments in relation extraction from text . 158

Python Module Index 163

Index 165

iv

CHAPTER 1

EMMAA Architecture and Approach

The Ecosystem of Machine-maintained Models with Automated Analysis is available at http://github.com/indralab/
emmaa, with the EMMAA Model Dashboard at http://emmaa.indra.bio.

The main idea behind EMMAA is to create a set of computational models that are kept up-to-date using automated ma-
chine reading, knowledge-assembly, and model generation, integrating new discoveries immediately as they become
available.

As a key component of the approach, models are automatically tested against experimental observations (also auto-
matically gathered and associated with models). Models are also available for automated analysis in which relevant
queries that fall within the scope of each model can be automatically mapped to structural and dynamical analysis
procedures on the model. Currently, the Dashboard supports running and registering queries with respect to one or
more existing models. In the near future, EMMAA will automatically recognize and report changes to each model
that result in meaningful changes to analysis results.

1

http://github.com/indralab/emmaa
http://github.com/indralab/emmaa
http://emmaa.indra.bio

EMMAA Documentation, Release 1.16.0

1.1 Model Assembly and Updates

1.1.1 Cancer types of interest

We start with six cancer types that are particularly relevant due to a combination of frequency of occurrence and lack
of adequate treatments. The cancer types we have initially chosen are as follows.

• Acute Myeloid Leukemia (aml)

• Breast Carcinoma (brca)

• Lung Adenocarcinoma (luad)

• Pancreatic Adenocarcinoma (paad)

• Prostate Adenocarcinoma (prad)

• Skin Cutaneous Melanoma (skcm)

Each type is followed by a “code” in parantheses indicating the identifier of the model through which models are
organized in the cloud, on AWS S3.

2 Chapter 1. EMMAA Architecture and Approach

EMMAA Documentation, Release 1.16.0

1.1.2 Model availability

EMMAA models may be browsed on the EMMAA Dashboard, for more information, see a tutorial to the dashboard
here: EMMAA Dashboard, and the dashboard itself here: http://emmaa.indra.bio. For example the AML model can
be accessed directly at http://emmaa.indra.bio/dashboard/aml.

1.1.3 Defining model scope

Each model is initiated with a set of prior entities and mechanisms that take entities as arguments. Search terms to
extend each model are derived from the set of entities.

1.1.4 Deriving relevant terms for a given type of cancer

Our goal is to identify a set of relevant entities (proteins/genes, families, complexes, small molecules, biological
processes and phenotypes) that can be used to acquire information relevant to a given model. This requires three
components:

• A method to find entities that are specifically relevant to the given cancer type

• A background knowledge network of interactions between entities

• A method to identify relevant links and entities on the background knowledge network

These methods, as described in the subsections below, are implemented in the TcgaCancerPrior (emmaa.priors.
cancer_prior.TcgaCancerPrior) class.

Finding disease genes

To identify genes that are relevant for a given type of cancer, we turn to The Cancer Genome Atlas (TCGA), a cancer
patient genomics data set available via the cBio Portal.

We implemented a client to the cBio Portal which is documented here.

Through this client, we first curate a list of patient studies for the given cancer type. These patient studies are tabulated
in emmaa/resources/cancer_studies.json.

Next, we query each study with a list of genes (the entire human genome, in batches) to determine which patients have
mutations in which genes. From this, we calculate statistics of mutations per gene across the patient population.

Finding relevant entities in a knowledge network

Finding relevant entities requires a prior network that can be supplied as a parameter to TcgaCancerPrior. We use
a network derived from processing and assembling the content of the PathwayCommons, SIGNOR, and BEL Large
Corpus databases, as well as machine reading all biomedical literature (roughly 32% full text, 68% abstracts) with two
machine reading systems: REACH and Sparser. This network has 2.5 million unique mechanisms (each corresponding
to an edge).

Starting from the mutated genes described in the previous section, we use a heat diffusion algorithm to find other
relevant nodes in the knowledge network. We first normalize the mutation counts by the length of each protein (since
larger proteins are statistically more likely to have random mutations which can lack functional significance). We
then apply the normalized mutation count as a “heat” on the node in the network corresponding to the gene. When
calculating the diffusion of heat from nodes, we take into account the amount of evidence for each edge in the network.
The number of independent evidences for the edge (i.e. the number of database entries or extractions from sentences
in publications by reading systems) and use a logistic function with midpoint set to 20 by default (parameterizable)

1.1. Model Assembly and Updates 3

http://emmaa.indra.bio
http://emmaa.indra.bio/dashboard/aml
http://www.cbioportal.org
https://indra.readthedocs.io/en/latest/modules/databases/index.html#module-indra.databases.cbio_client
https://github.com/indralab/emmaa/blob/master/emmaa/resources/cancer_studies.json
http://www.pathwaycommons.org/
https://signor.uniroma2.it/
https://wiki.openbel.org/display/home/Summary+of+Large+and+Small+BEL+Corpora
https://wiki.openbel.org/display/home/Summary+of+Large+and+Small+BEL+Corpora
http://github.com/clulab/reach
http://github.com/ddmcdonald/sparser

EMMAA Documentation, Release 1.16.0

to set a weight on the edge. We use a normalized Laplacian matrix-based heat diffusion algorithm on an undirected
version of the network, which can be calculated in a closed form using scipy.sparse.linalg.expm_multiply.

Having calculated the amount of heat on each node, we apply a percentile-based cutoff to retain the nodes with the
most heat.

Assembling a prior network

Given a set of entities of interest, we turn to the INDRA DB and query for all Statements about these entities. This
set of Statements becomes the starting point from which the model begins a process of incremental extension and
assembly. This is implemented in emmaa.priors.prior_stmts.

1.1.5 Updating the network

Given the search terms associated with the model, we use a client to the PubMed web service to search for new
literature content.

1.1.6 Machine-reading

Given a set of PMIDs, we use our Amazon Web Services (AWS) content acquisition and high-throughput reading
pipeline to collect and read publications using the REACH and Sparser systems. We then use INDRA’s input proces-
sors to extract INDRA Statements from the reader outputs. We also associate metadata with each Statement: the date
at which it was created and the search terms which are associated with it. These functionalities are implemented in the
emmaa.readers.aws_reader module.

As an optimized approach to gathering and reading new publications, we decoupled this step from EMMAA, and it
is currently done independently by a scheduled job of the INDRA DB once a day. EMMAA’s model update jobs
query the DB directly for Statements extracted from the new publications each day, making the model update cycle
significantly faster. These queries are implemented in emmaa.readers.db_client_reader.

1.1.7 Automated incremental assembly

Each time new “raw” Statements are added to the model from new literature results, an assembly process is run which
involves the following steps:

• Filter out hypotheses

• Map grounding of entities

• Map sequences of entities

• Filter out Statements with ungrounded entities

• Run preassembly in which exact and partial redundancies are found and resolved

• Calculate belief score for each Statement

• Filter to statements above a configured belief threshold

• Filter out subsumed Statements with respect to partial redundancy graph

• (In some models) filter out Statements representing indirect mechanisms

The set of Statements obtained this way are considered to be “assembled” at the knowledge level. It is this assembled
set of Statements that are considered when showing update statistics on the Dashboard. The newly obtained assembled
Statements are also evaluated against Statements already existing in the model. Note that The Statements below the

4 Chapter 1. EMMAA Architecture and Approach

https://docs.scipy.org/doc/scipy-0.16.1/reference/generated/scipy.sparse.linalg.expm_multiply.html
https://indra.readthedocs.io/en/latest/modules/literature/index.html#module-indra.literature.pubmed_client
https://github.com/clulab/reach
https://github.com/ddmcdonald/sparser

EMMAA Documentation, Release 1.16.0

threshold still remain in the “raw” model knowledge and can later advance to be included in the published model if
they collect enough evidence to reach the belief threshold.

A new Statement can relate to the existing model in the following ways:

• Novel: there is no such mechanism yet in the model

• Redundant / Corroborating: the mechanism represented by the Statement is already in the model, providing new,
corroborating evidence for that Statement

• Generalization: the mechanism is a more general form of one already in the model

• Subsumption: the mechanism is a more specific form of one already in the model

• Conflicting: the mechanism conflicts with one already in the model

Currently, the dashboard lists new Statements without explicitly showing what relationship they have to the existing
model.

1.2 Meta-Model

Analysis of scientific models is typically a manual process in which specific simulation scenarios are formulated in
code, executed, and the results evaluated. In EMMAA, models will be semantically annotated with concepts allowing
scientific queries to be automatically formulated and executed. The core component of this process will be a meta-
model for associating the necessary metadata with specific model elements.

As shown in the figure above, the EMMAA meta-model will allow the annotation of:

• relevant entities (e.g., specific genes or biological processes)

• relations/processes (e.g., phosphorylation, activation)

• quantities in model-relevant data (e.g., measured values associated with specific model parameters)

• features of model parameters and observables relevant to subsequent experimental follow-up (e.g.,for example
whether a parameter can be experimentally altered or whether measurement of a particular observable is cost-
effective)

• higher-level scientific aspects associated with model variables and outcomes, such as the utility associated with
particular model states (e.g., decreased cell proliferation)

The EMMAA meta-model allows model elements encoded in different formalisms to be associated with the concepts
necessary for automated analysis in EMMAA. For example, a protein initial condition parameter from an executable
PySB model could be linked to the EMMAA concepts for a parameter that is naturally varying, non-perturbable, and
experimentally measurable.

While several of these concepts have not been previously implemented in existing ontologies for semantic annota-
tions of biological models, we will aim to reuse terms and concepts from ontologies developed by the COMBINE
community where appropriate. These may include:

• MIRIAM (Minimimal Information Required In the Annotation of Models)

• SED-ML (Simulation Experiment Description Markup Language)

• SBO (Systems Biology Ontology)

1.2. Meta-Model 5

http://pysb.org
http://co.mbine.org/standards
http://co.mbine.org/standards
https://co.mbine.org/standards/miriam
https://sed-ml.github.io/
http://www.ebi.ac.uk/sbo/main/

EMMAA Documentation, Release 1.16.0

• KISAO (Kinetic Simulation Algorithm Ontology)

• Biomodels.net qualifiers

• MAMO (the Mathematical Modeling Ontology)

• SBRML (Systems Biology Results Markup Language)

• TEDDY (TErminology for the Description of DYnamics)

1.2.1 Initial specification of annotation guidelines

The meta-model will be implemented as a specification that can be implemented in different ways depending on the
model type; in this way it will resemble the MIRIAM standard, which is not itself a terminology but rather a set of
guidelines for using of (subject, predicate, object) triples to link essential model features to semantic concepts.

The EMMAA meta-model establishes several specific concepts and annotation guidelines aimed at automating high-
level scientific queries. In particular, the initial specification for model annotation in EMMAA includes the following
requirements to support basic simulation and analysis tasks:

1. Model entities (e.g., variables in an ODE model, nodes in a network model) must be linked to identifiers in
external ontologies.

2. Entity states (e.g., phosphorylated, mutated, active or inactive proteins) should be identified semantically using
an external ontology or controlled vocabulary.

3. Model processes (e.g., reactions in an ODE model, edges in a network model) must be linked to a piece of
knowledge including provenance and evidence. In our initial implementation, this will be accomplished using
the has_indra_stmt relation which will link back to an underlying INDRA statement.

4. Entities participating in processes should be identified with their role (e.g subject or object) for directional
analysis.

5. (Optional): if it is not already implicit in the modeling formalism, the model process can be annotated with the
sign of the process on its participants (i.e., positive or negative regulation).

1.2.2 EMMAA currently supports “does X. . . ” queries for PySB models

Annotating a model using the five types of information above supports high-level queries such as: “Does treatment
with drug X cause an increase in the phosphorylation of protein Y?” Answering this yes-or-no query makes use of
model annotations in the following way:

• Entities in the model representing drug X are identified (#1, above).

• Entities in the model representing phosphorylated Y are identified (#1 and 2).

• Processes with drug X as the subject are identified, as are processes with phosphorylated Y as the object (#4,
above).

• The effect of the drug X entities/processes on the phosphorylated protein Y entities/processes are determined
using a model-specific analytical procedure, making use of sign information if necessary (#5).

• The analysis results are linked back to the knowledge model via has_indra_stmt annotations (#3).

We currently have an end-to-end implementation that uses model annotations to answer these types of queries for a
single model type: executable dynamical models implemented in PySB. Model annotations are generated as part of
the PySB model assembly process in INDRA; for instance see the PySB Assembler code here for an example of how
the PySB Annotation class is used to associate entities with their role (subject/object) in a process (#4).

To answer a “does” query like the one specified above, the ModelChecker makes use of these annotations to search for
a path through the model’s influence map with the appropriate sign.

6 Chapter 1. EMMAA Architecture and Approach

http://co.mbine.org/standards/kisao
http://co.mbine.org/specifications/qualifiers
http://co.mbine.org/standards/mamo
http://precedings.nature.com/documents/6351/version/1
http://co.mbine.org/specifications/teddy
https://co.mbine.org/standards/miriam
http://pysb.org
https://indra.readthedocs.io/en/latest/_modules/indra/assemblers/pysb/assembler.html#grounded_monomer_patterns
https://github.com/pysb/pysb/blob/master/pysb/annotation.py
https://github.com/sorgerlab/indra/blob/c5f15dfe9f30f71cc1b8798e7c9042c4d10bd051/indra/explanation/model_checker.py#L144

EMMAA Documentation, Release 1.16.0

These types of queries can currently be used to formulate model tests using the StatementCheckingTest (emmaa.
model_tests.StatementCheckingTest), and triggered automatically upon every model update using the
testing pipeline described in Model Testing and Analysis.

1.2.3 Annotations required for “what if” queries

As opposed to a “does X. . . ” query like the example above, which are used to determine the connectivity and sign of
causal paths in the model at baseline, a “what if” query indicates a perturbation and involves an open-ended response.
For example, consider the following queries:

• “What happens to protein X if I knock out protein Y?”

• “What happens to protein X if I double the amount of drug Y?”

• “What happens to protein X if I decrease its affinity to drug Y?”

Addressing these queries in general requires designating a model control condition (e.g., a specific initial state or
steady state) that is perturbed by the manipulation of model structure or parameters. This requires the following model
features to be identified by additional annotations:

6. Model parameters governing entity amounts

7. Effect of model parameters on the strength of interaction between entities (for example, the forward and reverse
rates of a binding interaction both affect the affinity of the interaction, but in opposite ways).

1.2.4 Annotations required for open-ended “relevance” queries

Finally, we aim to enable the automation of analysis procedures that are not based on explicit queries but rather aimed
at identifying model characteristics that have scientific relevance and value. An example would be to “notify me of
mechanistic findings therapeutically relevant to pancreatic cancer.” This type of query requires additional annotations
on the higher-level biological processes associated with model entities and their scientific relevance. We aim to
implement the following additional three annotations for this purpose:

8. Biological processes or phenotypes associated with specific model entities, and their sign (e.g., phosphorylated
MAPK1 is positively associated with cell proliferation in pancreatic cancer).

9. A value criterion associated the biological process (e.g., it is therapeutically desirable to increase cancer cell
apoptosis, and decrease cancer cell proliferation).

10. Entity types that represent actionable perturbations. For example, it may be of greater interest to identify a chem-
ical perturbation that yields a desirable affect than a genetic perturbation, because (at least present) chemical
perturbations are more experimentally and therapeutically tractable.

These ten annotation types represent the initial set for the EMMAA cancer models.

1.3 Model Testing and Analysis

A key benefit of using semantically annotated models is that it allows models to be automatically validated in a
common framework. In addition to automatically extracting and assembling mechanistic models, EMMAA runs a set
of tests to determine each model’s validity and explanatory scope. We have implemented an approach to model testing
that automates

• the collection of test conditions from a pre-existing observational knowledge base,

• deciding which test condition is applicable to which model,

• executing the applicable tests on each model, and

1.3. Model Testing and Analysis 7

EMMAA Documentation, Release 1.16.0

• reporting the summary results of the tests on each model.

The overall concept of automated model testing in EMMAA is shown in this figure. Each time a model is updated
with new findings, the model is tested against a set of expected observations or properties. The tests themselves can
evolve over time as new observations are collected.

1.3.1 Model test cycle deployed on AWS

Whenever there is a change to a model, a pipeline on Amazon Web Services (AWS) is triggered to run a set of
applicable model tests. When a model is updated (i.e., with new findings extracted and assembled from novel research
publictions), a snapshot of it is deposited on the S3 storage service. A Lambda process monitors changes on S3 and
when a change occurs, triggers a Batch job. The Batch job accesses the Dockerized EMMAA codebase and runs the
automated test suite on the model. The test results are then deposited on S3. Finally, the new test results are propagated
onto the EMMAA Dashboard website. This process is summarized in the figure below.

The code implemented here is available in the following places:

• The Lambda implementation is documented at: emmaa.aws_lambda_functions.

• The EMMAA Docker image is available here .

1.3.2 Test conditions generated automatically

EMMAA implements a novel approach to collecting observations with respect to which models can be tested. Given
a set of INDRA Statements, which can be obtained either from human-curated databases or literature extractions,
EMMAA selects ones that represent experimental observations (which relate a perturbation to a potentially indirect
downstream readout) from direct physical interaction-like mechanisms. We treat these observational Statements as
constraints on mechanistic paths in a model. For instance, the observation “treatment with Vemurafenib leads to de-
creased phosphorylation of MAPK1”, could be satisfied if the model contained a sequence of mechanisms connecting
Vemurafenib with the phosphorylation state of MAPK1 such that the aggregate polarity of the path is positive.

As a proof of principle, we created a script which generates such a set of test conditions from the BEL Small Corpus,
a corpus of experimental observations and molecular mechanisms extracted by human experts from the scientific

8 Chapter 1. EMMAA Architecture and Approach

https://hub.docker.com/r/labsyspharm/emmaa

EMMAA Documentation, Release 1.16.0

literature. Going forward, we will also rely on observations collected directly from the literature for automated model
testing.

The code to generate and run this corpus of test statements is available here.

1.3.3 General EMMAA model testing framework

EMMMA contains a test framework in emmaa.model_tests with an abtract class interface to connect models
with applicable tests and then execute each applicable test with respect to each applicable model. One strength of this
abstract class architecture is that it is agnostic to

• the specific content and implementation of each model and test,

• the criteria by which a test is determined to be applicable to a model,

• the procedure by which a test is determined to be satisfied by a model.

It therefore supports a variety of specific realizations of models and tests. The classes providing this inter-
face are the TestManager (emmaa.model_tests.TestManager), TestConnector (emmaa.model_tests.
TestConnector) and EmmaaTest (emmaa.model_tests.EmmaaTest).

Test conditions mapped to models automatically

EMMAA currently implements a specific set of testing classes that are adequate for our cancer models. This imple-
mentation uses the ScopeTestConnector (emmaa.model_tests.ScopeTestConnector) and StatementCheck-
ingTest (emmaa.model_tests.StatementCheckingTest) classes in EMMAA. The ScopeTestConnector
class uses our meta-model annotations to determine the identity of the concepts in the model as well as in the test, and
deems the test to be applicable to the model if all the concepts (i.e. the perturbation and the readout) in the test are
also contained in the model.

Testing models using static analysis

The StatementCheckingTest class takes a pair of a model and an applicable tests, and determines whether the model
satisfies the test as follows. The model is first assembled into a rule-based PySB model object using INDRA’s PySB
Assembler. The model is then exported into the Kappa framework, which provides static analysis methods, including
generating an influence map (a signed, directed graph) over the set of rules in the model. EMMAA then uses INDRA’s
Model Checker to find paths in this influence map that match the test condition (itself expressed as an INDRA State-
ment). If one or more such paths are found, the test is assumed to be satisfied, and the results are reported and stored.
Otherwise, the model is assumed to to satisfy the test.

An end-to-end model building and testing example is available here.

Going forward, the testing methodology will involve multiple modes of simulation and analysis including also dynamic
testing.

Human-readable model test reports

A snippet of the test report for a Ras signaling pathway model (see http://emmaa.indra.bio/dashboard/rasmodel) as of
4/1/2019 is shown below, where each “Observation” is expressed in terms of an expectation of model behavior (e.g.,
“IFG1R phosphorylated on Y1166 activates IRS1”) along with a determination of whether the constraint was satisfied
(green tick mark if yes, red cross if not), along with a description of the specific way in which the model satisfies the
test condition (as human-interpretable English language summary) or the reason for why the model could not satsfy
the test condition.

1.3. Model Testing and Analysis 9

https://github.com/indralab/emmaa/blob/master/scripts/run_bel_tests.py
https://indra.readthedocs.io/en/latest/modules/explanation/index.html#module-indra.explanation.model_checker
https://github.com/indralab/emmaa/blob/master/scripts/generate_simple_model_test.py
http://emmaa.indra.bio/dashboard/rasmodel

EMMAA Documentation, Release 1.16.0

In a manner analogous to continuous integration for software, EMMAA model testing is automatically triggered on
AWS anytime the model or its associated constraints are updated.

1.3.4 Model queries from users

Through the EMMAA Dashboard Query page at http://emmaa.indra.bio/query, users can submit specific queries to
one or more models simultaneously, that are evaluated immediately by a web service, and the results of the analysis
are summarized in a table. For more information, see: EMMAA Model Queries.

EMMAA currently supports “Path property” queries on its models in a templated form through the Dashboard. How-
ever, the types of analysis queries will be extended, and we imagine later supporting natural language-based querying
as well. The types of queries EMMAA will support are as follows. We developed a Model Analysis Query Language
which specifies these types of properties, see Model Analysis Query Language.

• Structural properties with constraints: e.g., “What drugs bind PIK3CA but not PIK3CB?”

• Path properties with constraints: e.g., “How does treatment with PD-325901 lead to EGFR activation?”

• Simple intervention properties: e.g., “What is the effect of Selumatinib on ERK activation by EGF?”

• Comparative intervention properties: e.g., “How is the effect of targeting MEK different from targeting PI3K
on the activation of ERK by EGF?”

Each such property maps onto a specific model analysis task that can be run on an EMMAA model, for instance,
causal path finding with semantic constraints, or dynamical simulations under differential initial conditions.

1.3.5 Pre-registered queries and notifications

Each query can also be “registered” by EMMAA, and evaluated again whenever the model is updated. Currently these
registered queries are shared by all users. Going forward, individual users will be able to register their own, personal
queries for one or more models of interest. The result of analysis for each property on a given version of the model
will be saved. This will then allow comparing any changes to the result of analysis with previous states of the model.
If a meaningful change occurs, a notification will be generated to the user who registered the query.

10 Chapter 1. EMMAA Architecture and Approach

http://emmaa.indra.bio/query

EMMAA Documentation, Release 1.16.0

1.4 Model Analysis Query Language

This is v1.0 of a specification for a machine-readable description format for the analysis and querying of EMMAA
models. The specification uses a JSON format that is easily generated and processed, and is also human-readable and
editable.

The specification extends to four, increasingly complex query types:

• Structural properties with constraints

• Path properties with constraints

• Simple intervention properties

• Comparative intervention properties

Note that this specification for defining queries does not explcitly specify the method by which the query is executed,
though some query specifications are defined with a certain type of analysis method in mind.

1.4.1 Structural properties with constraints

Structural properties of models are evaluated directly at the knowledge-level, in our case at the level of INDRA
Statements. Each Statement has a type (Activation, Dephosphorylation, etc.), refers to one or more entities (Agents)
as arguments, which themselves can have different types are determined by grounding to an ontology. At an abstract
level

Structural property queries can have different “topologies” in terms of the entities they reference including

• unary queries referring to a single Agent alone,

• queries referring to a single Agent and its neighborhood,

• binary queries that refer to two Agents.

Structural property queries may also constrain the type of the Statement and Agent.

1.4. Model Analysis Query Language 11

EMMAA Documentation, Release 1.16.0

Specifying topology

Structural queries have multiple subtypes based on the topology of the query:

• binary_directed: specifies two Agents, a source and a target, between which, a directed relationship is queried.

• binary_undirected: specifies two Agents in an agents list, in arbitrary order, and relationship direction is of
interest in the query.

• neighborhood: specifies a single agent around which a relationship in any direction (incoming, outgoing, undi-
rected) is of interest.

• to_target: specifies a single Agent as a target and only incoming relationships are of interest.

• from_source: specifies a single Agent as a source and only outgoing relationships are of interest.

• single_agent: specifies a single agent with the query focusing on a property of the Agent itself rather than any
relationships.

Each Agent is defined via its name, and optionally, groundings, for more information, see the relevant entry of the
INDRA JSON Schema: https://github.com/sorgerlab/indra/blob/master/indra/resources/statements_schema.json#L77

Entity constraints

Entity constraints (entity_constraints) can be added to the query, these can constrain the type (protein, chemical,
biological process, etc.) and subtype (kinase, transcription factor, etc.) of the Agents of interest.

Relationship constraints

Relationship constraints can be specified by describing the type of Statement establishing the relatonship.

Examples

Example: “What kinases does BRAF phosphorylate?”

{"type": "structural_property",
"subtype": "from_source",
"source": {
"type": "agent",
"name": "BRAF"
},

"entity_constraints": [
{"type": "protein",
"subtype": "kinase"}

],
"relationship_constraints": [
{"type": "Phosphorylation"}

]
}

Ideas for extension

The constraints could be generalized to allow logical formulae over entity types and relations.

12 Chapter 1. EMMAA Architecture and Approach

https://github.com/sorgerlab/indra/blob/master/indra/resources/statements_schema.json#L77

EMMAA Documentation, Release 1.16.0

1.4.2 Path properties with constraints

Path properites of models are evaluated at a lower level than simple structural properties due to the fact that mechanistic
paths need to be causally consistent (i.e., each step of the path needs to be causally linked to the next step).

Specifying the overall path

The overall path specification can be done using the JSON Schema developed for INDRA Statements (see https://
github.com/sorgerlab/indra/blob/master/indra/resources/statements_schema.json). The path is specified via an overall
type, and, depending on the type, the appropriate Agent arguments.

Entity constraints

It is possible to specify constraints on the entities (entity_constraints) appearing along the path, for instance, whether
to include or exclude certain Agents. The keys for these specifications are include and exclude respectively.

Relationship constraints

It is also possible to specify constraints on relationships along the path (relationship_constraints) with the include and
exclude keys.

Examples

Example: “How does EGFR lead to ERK phosphorylation without including PI3K or any transcriptional regulation?”

{"type": "path_property",
"path": {

"type": "Phosphorylation",
"enz": {

"type": "Agent",
"name": "EGFR"
},

"sub": {
"type": "Agent",
"name": "ERK"
}

},
"entity_constraints": {
"exclude": [

{"type": "Agent",
"name": "PI3K"}
]

},
"relationship_constratints": {
"exclude": [

{"type": "IncreaseAmount"},
{"type": "DecreaseAmount"}
]

}
}

1.4. Model Analysis Query Language 13

https://github.com/sorgerlab/indra/blob/master/indra/resources/statements_schema.json
https://github.com/sorgerlab/indra/blob/master/indra/resources/statements_schema.json

EMMAA Documentation, Release 1.16.0

1.4.3 Simple intervention properties

Simple intervention properties focus on the effects of targeted interventions on one or more entities in the model
without considering comparisons or optimization across multiple interventions.

Specifying an intervention

An intervention can be specified either on a single entity readout or on a path-level effect (we call this a reference, i.e.,
something that the intervention is meant to change). In the first case, the readout is represented, again, as an INDRA
Agent, with name, grounding and state. In the second case, a path is represented as and INDRA Statement with type
and Agent arguments. The intervention itself is represented as a list of Agents with additional parameters to specify
the type of intervetion.

Specifying the reference

The reference can either have type of relationship or entity. In case of a relationship, the specification is an INDRA
Statement JSON. In case of an entity, the specificaton is an INDRA Agent JSON (see references above).

Specifying the intervetion

The intervention consists of a list of intervening entities (specified as INDRA Agent JSONs) and the perturbation by
which the intervention applies to these entities (i.e., increase, decrease).

Examples

Example: “How does Selumetinib affect phosphorylated MAPK1?”

{"type": "simple_intervention_property",
"reference": {

"type": "Agent",
"name": "MAPK1",
"mods": [

{"mod_type": "phosphorylation"}
]

},
"intervention": [

{"entity": {
"type": "Agent",
"name": "Selumetinib"
},

"perturbation": "increase"
}

]
}

1.4.4 Comparative intervention properties

Comparative intervention properties are similar to simple intervention properties but are more general in that they can
be used to express comparisons or optimality among a set of possible intervetions. The specification consists, again,
of a reference, but this time, a list of interventions rather than a single intervention. The comparison also needs to be
specified, i.e., whether the intervetion is meant to increase or decrease the reference.

14 Chapter 1. EMMAA Architecture and Approach

EMMAA Documentation, Release 1.16.0

For comparative intervention properties, the reference and each possible intervention is specified as above.

Examples

Example: “Is Selumetinib or Vemurafenib optimal in decreasing ERK activation by EGF?”

{"type": "comparative_intervention_property",
"reference": {

"type": "Activation",
"subj": {

"name": "EGF",
},

"obj": {
"name": "ERK",
}

},
"interventions": [

[{"entity": {
"type": "Agent",
"name": "Selumetinib"
},

"perturbation": "increase"
}],

[{"entity": {
"type": "Agent",
"name": "Vemurafenib"
},

"perturbation": "increase"
}]

],
"comparison": "increase"

}

1.4. Model Analysis Query Language 15

EMMAA Documentation, Release 1.16.0

16 Chapter 1. EMMAA Architecture and Approach

CHAPTER 2

EMMAA Dashboard

The EMMAA Dashboard is accessible at http://emmaa.indra.bio.

The EMMAA Dashboard is the main entrypoint for users to interact with models. Each card on the dashboard repre-
sents a model. Currently, users can browse and link out to interactive, searchable network views of multiple disease
and pathways models, as well as details of the latest tests applied to the models. The user can also navigate to a queries
page where queries about the models can be answered. Users are able to sign up for specific notifications about one
or more automatically built, tested and analyzed models. Some models also have a Twitter account and a link to it is
provided on the dashboard if available

Please read the sections below to learn how different EMMAA pages work.

17

http://emmaa.indra.bio

EMMAA Documentation, Release 1.16.0

2.1 EMMAA Models Page

The models page contains detailed information about the selected model in four tabs: Model, Tests, Papers, and
Curation. At the top of the page the selected model is shown in a drop-down menu. Another model can also be
selected and loaded from the menu.

2.1.1 Link to statement details

To see further details regarding a mechanism, links to a separate page are generated for all statements where possible.
To read more about that page, see: EMMAA Statement Evidence Page.

Fig. 1: Link to statement evidence page

2.1.2 Model Tab

The model tab contains model info with the model description, the date the model was last updated and the date when
the displayed state of the model was generated. By default the latest available state of the model is displayed but the
user has an option to explore earlier states by clicking on an earlier time point on any of the time plots across the tabs
(for more details see: Load Previous State of Model). Links to the NDEx website where a network view of the model
can be examined and to the Twitter account if available are provided. It is possible to download the models in various
formats and the corresponding buttons are placed next.

The page also displays properties of the current state of the model, namely, the distribution of statement types, the top
10 agents in the model, the distribution of knowledge sources (reading systems and databases) of model statements
and the statements with the most support from various knowledge bases. The table with most supported statements
also has a button “All statements” clicking on which a user can be redirected to a page showing all statements in the
model: EMMAA All Statements Page. Further, the page shows how the number of statements in the model has evolved
over time, and which statements were added to the model during the most recent update.

2.1.3 Tests Tab

At the top of the tests tab, a drop down menu displays which test corpus was used for the currently displayed test
results. Clicking on the drop down menu will display all available test corpora for the current model. Clicking “Load
Test Results” will load the test results for the selected test corpus.

The tests tab contains two related plots: one showing the evolution over time of the percentage of applicable tests that
passed, and another showing the absolute number of tests that were applied to the model and the number of tests that
passed in each of supported model types. For the first few months of the project, the tests were only run on a PySB
model assembled from EMMAA model statements. Later three additional model types were added, namely, PyBEL
graph, signed directed graph and unsigned directed graph.

18 Chapter 2. EMMAA Dashboard

EMMAA Documentation, Release 1.16.0

Fig. 2: The top of the model tab

2.1. EMMAA Models Page 19

EMMAA Documentation, Release 1.16.0

Fig. 3: The results from different test corpora can be loaded. Here “Rasmodel Tests”, “Skcm tests”, “Rasmachine
Tests”, and “Large Corpus Tests” are available.

If any new tests were applied in the latest test run of the model they are shown under New Applied Tests. A green
check mark is shown for tests that passed and a red cross is shown for the tests that did not. The marks can be clicked
on and link to a detailed test results page where the detailed path(s) or a reason for the model not having passed the
test will be shown. To read more about the detailed test results page, see: EMMAA Detailed Test or Query Results.

New tests that passed for any of the model types are shown under New Passed Tests along with the top path found. The
statements supporting the path are can be seen by clicking on a path which links out to the detailed test results page
for the test.

Further down, all tests applied to the model are shown. Similarly to new applied tests, this table also contains green
and red marks indicating the test status, linking to detailed test results page.

2.1.4 Papers Tab

The Papers tab shows statistics for both processed papers and papers that support assembled model statements. At the
top of the Papers tab the time series plot shows the changes in the counts of both paper groups over time.

Further down, papers with the largest number of assembled statements are shown. The statements extracted for each
paper can be viewed by clicking on a paper title (see: EMMAA Individual Paper Page).

Finally, a list of papers processed after the previos update is displayed. The table is sorted first by the number of
assembled statements and then by the number of raw statements extracted from the paper. One or both of these numbers
can be zero. Zero assembled statements with a positive number of raw statements means that the raw statements were
filtered from the model during the assembly process. Two zeros mean that the paper was processed but no statements
were extracted from it. The second column in this table provides a link to the original publication as an external
resource.

2.1.5 Curation Tab

The Curation tab summarizes statistics related to curations for statements that are part of the model. At the top of the
tab two barplots show the counts of evidences and assembled statements curated by individual curators.

The next plot shows the number of curations grouped by type.

Finally, the number of curated statements and evidences over time is shown.

20 Chapter 2. EMMAA Dashboard

EMMAA Documentation, Release 1.16.0

Fig. 4: The top of the tests tab showing the percentage of tests passed together with applied and passed tests in different
model types

2.1. EMMAA Models Page 21

EMMAA Documentation, Release 1.16.0

Fig. 5: If new tests were applied, they will be shown together with a breakdown of a test status per each model type

22 Chapter 2. EMMAA Dashboard

EMMAA Documentation, Release 1.16.0

Fig. 6: If new tests were passed, they will be shown together with a top path

2.1. EMMAA Models Page 23

EMMAA Documentation, Release 1.16.0

Fig. 7: Part of the list showing all applied tests with a status indicator for passed/failed

Fig. 8: Number of processed papers and papers with assembled model statements over time

Fig. 9: Example of new processed papers table

24 Chapter 2. EMMAA Dashboard

EMMAA Documentation, Release 1.16.0

Fig. 10: Counts of evidences and statements curated by individual curators

Fig. 11: Curations grouped by type

2.1. EMMAA Models Page 25

EMMAA Documentation, Release 1.16.0

Fig. 12: Curations over time

2.1.6 Load Previous State of Model

To view the state of the selected model together with the test results for a particualar date, click on any data point for
the desired date in any of the time series shown on either the Model tab, the Tests tab or the Papers tab.

Fig. 13: Clicking on a data point in any time series will link to the state of the model and the test results for the
associated date.

Clicking the data point will link back to the same models page with data loaded for the selected date. The model info
section displays the selected date as well as the date for the most recent data. Any time series show data up to the
selected date. Any section showing new updates, such as “New Passed Tests”, shows what was new on the selected
date while “All Test Results” shows the state of the results were in. Clicking on “Go To Latest” on the top panel will
link back to the most recent state of the model.

2.2 EMMAA Statement Evidence Page

Any statement displayed on any of the other pages (model page, detailed test or query results) is linked to a statement
evidence page where evidences from different sources can be browsed and curated.

26 Chapter 2. EMMAA Dashboard

EMMAA Documentation, Release 1.16.0

Fig. 14: When the state of the model for a previous date is shown, the date is diplayed in “Data Displayed”. Clicking
on “Go To Latest” on the top panel will link back to the most recent state of the model

Fig. 15: Statement evidence view

2.2. EMMAA Statement Evidence Page 27

EMMAA Documentation, Release 1.16.0

At the top of the table, the statement itself is presented followed by a list of sentences supporting this statement. There
are several badges that represent additional information about the statement. The blue badge with a flag in the example
above shows have many paths this statement is a part of. A green or a red badge with a pencil shows how many times
this statement was curated as correct or incorrect respectively. The grey badge shows the number of loaded evidence
and the total number of evidences supporting this statement. Clicking on the JSON badge opens a new page containing
the JSON representation of the statement. For each evidence the knowledge source and external link to the publication
is given. Clicking on the pencil badge to the left of the evidence, a user can curate this evidence.

2.3 EMMAA All Statements Page

The All statements page allows to browse and curate statement evidences similar to the statement evidence page but in
this case all statements in the model are listed. By clicking on any statement, a user can open its evidences. By default
the statements are sorted by the number of supporting evidence they have, but it is possible to sort them by the number
of paths they contribute to. The “Previous” and “Next” buttons allow to page through the full list of statements (only
1000 statements per page are loaded). The “Filter Curated” button allows to filter out the statements that have been
already curated. It’s also possible to download all statements in JSON format by clicking on “Download Statements.”
Each statement can have multiple badges that have the same meaning as in the statement evidence page. A blue badge
with a flag shows how many paths this statement is a part of. A green or red badge with a pencil shows how many times
this statement was curated as correct or incorrect respectively. A grey badge shows the number of loaded evidences
and the total number of evidences supporting this statement. Clicking on the JSON badge opens a new page containing
the JSON representation of the statement.

Fig. 16: All statements page view

2.4 EMMAA Individual Paper Page

By clicking on a paper title on the Papers tab on model page, a user is redirected to an individual paper page that
contains model statements from this paper. The view here is similar to the statement evidence or the all statements
page with the exception that the statements and evidences are filtered to only those that are extracted from a given

28 Chapter 2. EMMAA Dashboard

EMMAA Documentation, Release 1.16.0

paper. To browse and curate the evidences, a user needs to click on a statement. Each statement can have multiple
badges that have the same meaning as in the statement evidence page. A blue badge with a flag shows have many
paths this statement is a part of. A green or a red badge with a pencil shows how many times this statement was
curated as correct or incorrect respectively. The grey badge shows the number of loaded evidences and the total
number of evidences supporting this statement. Clicking on the JSON badge opens a new page containing the JSON
representation of the statement.

Fig. 17: Individual paper page view

2.5 EMMAA Model Queries

The Queries page can be accessed by clicking the “Queries” link at the top of the Dashboard website. The page
contains the forms to submit queries and results of queries in four tabs Source-target paths, Source-target dynamics,
Temporal properties, and Up/down-stream paths corresponding to three currently supported query types.

Each tab has the following boxes:

• Description - a brief description of selected query mode, what questions can it answer and how to specify it
properly.

• Query specification - a form to select which models the query should be run on and to specify query parameters.

• Query results - here the immediate results for the recently run query will be displayed.

• Subscribed queries - if a user is logged in and has previously subscribed to any queries of a given type, these
queries are rerun every time the models are updated and the latest results will be displayed in this box.

2.5.1 Which query type do I need?

• If you want to explain an effect between two entities, read more about Source-target paths queries

• If you want to observe the effect of intervention in dynamical simulation, read more about Source-target dynam-
ics queries

• If you want to observe the baseline dynamics of an entity in the model in dynamical simulation, read more about
Temporal properties queries

2.5. EMMAA Model Queries 29

EMMAA Documentation, Release 1.16.0

• If you want to find the downstream targets or upstream regulators of an entity, read more about Up/down-stream
paths queries

2.5.2 Source-target paths queries

This query mode uses causal path finding to explain an effect between a source and a target. It allows to answer
questions like “How does EGF lead to the phosphorylation of MAPK1”? Depending on which EMMAA model is
selected, multiple modeling formalisms (unsigned graph, signed graph, PyBEL model, PySB model) are used to find
paths, each with different causal constraint assumptions, potentially resulting in different results.

Submitting a Query

Specifying the query involves providing names for a source and a target and selecting a statement type (e.g., Phospho-
rylation, Inhibition, IncreaseAmount). It is possible to run the queries against one or more EMMAA models to see the
results in different contexts. At least one model needs to be selected for the query submission to be valid.

Fig. 18: The query ready to be submitted that asks if BRAF activates ERK in the AML and BRCA cancer models.

If the query is badly formatted or missing information, an error will be shown stating the type of error.

Viewing the results

The query service will receive the query and return a response which is displayed in the Query Results table below.
Query results are presented as a grid of green, red and grey marks. A green check mark is shown for queries that
passed and a red cross is shown for the queries that did not. Grey cirlce will be shown for queries not applicable for
selected model. The marks can be clicked on and link to a EMMAA Detailed Test or Query Results page where the
detailed path(s) or a reason for the model not having passed the query will be shown.

Fig. 19: The above query resolved, showing the result per model and model type. Detailed results can be viewed by
clicking on a green/red mark.

30 Chapter 2. EMMAA Dashboard

EMMAA Documentation, Release 1.16.0

2.5.3 Source-target dynamics queries

This query mode uses dynamical simulation to describe the effect of an intervention from a given source on a given
target. An example question that can be answered using this query type is “If the initial amount of BRAF is increased,
does the phosphorylation of MAP2K1 increase?”. The results provide a yes/no answer to the query as well as the time
course results of simulations of the target readout (phosphorylated MAP2K1 in the above example) to compare the
effect of two different initial amounts of the source.

Submitting a Query

Source-target dynamics query requires the user to specify the model, a source and a target by name, and select a
statement type(e.g., Phosphorylation, Inhibition, IncreaseAmount) which represents the effect of the intervention on
the target. It is possible to run the queries against one or more EMMAA models to see the results in different contexts.
At least one model needs to be selected for the query submission to be valid.

Fig. 20: The query ready to be submitted that asks whether SOS1 leads to the activation of KRAS in simulation of RAS
model.

If the query is badly formatted or missing information, an error will be shown stating the type of error.

Viewing the results

Results include a green/red mark showing whether the expected intervention effect was oserved in the simulation and
a plot of the observable’s time course during the simulation with and without the intervention.

2.5.4 Temporal properties queries

This query mode uses dynamical simulation to verify if the baseline dynamics (i.e., no intervention) of the model
meets a given qualitative pattern. To answer these queries simulations are run on a PySB-assembled EMMAA model.
Temporal properties query allows answering questions like “Is the amount of phosphorylated BRAF at any point in
time high?”. The result provides a yes/no answer to the query as well as the time course results of simulations of the
given agent state.

Submitting a Query

Temporal properties query requires the user to specify the model, provide an agent state description (e.g., “active
KRAS”, “phosphorylated BRAF”, “DUSP6 bound to MAPK1”), a pattern type (e.g., sometime_value) and in some
pattern types, a value (e.g., low/high). It is possible to run the queries against one or more EMMAA models to see the
results in different contexts. At least one model needs to be selected for the query submission to be valid.

2.5. EMMAA Model Queries 31

EMMAA Documentation, Release 1.16.0

Fig. 21: The above query resolved, showing that active KRAS is substantially higher when SOS1 is present at a high
level

Fig. 22: The query ready to be submitted that asks whether phosphorylated MAP2K1 is eventually high in the MARM
model.

32 Chapter 2. EMMAA Dashboard

EMMAA Documentation, Release 1.16.0

If the query is badly formatted or missing information, an error will be shown stating the type of error.

Viewing the results

Results of the dynamical queries include a green/red mark showing whether the required condition was satisfied in
more than a half of simulations and a plot of the observable’s time course during the simulation.

Fig. 23: The above query resolved, showing how the amount of phosphorylated MAP2K1 changes during the simula-
tion

2.5.5 Up/down-stream paths queries

This query mode allows finding causal paths to or from a given agent to identify its upstream regulators and its
downstream targets. A user can optionally limit the up/downstream entities to genes/proteins, small molecules or
biological processes. It allows expressing questions such as “What small molecules inhibit the phosphorylation of
JAK2?” or “What biological process does TNF activate?”. The result returns not only the entities but also the specific
causal paths that are consistent with the query specification. Depending on which EMMAA model is selected, multiple
modeling formalisms (unsigned graph, signed graph, PyBEL model, PySB model) are used to find paths, each with
different causal constraint assumptions, potentially resulting in different results.

Submitting a Query

The query specification involves specifying the agent by name and role (subject or object corresponding to finding its
downstream targets or upstream regulators, respectively), a statement type representing the effect of the regulations
(e.g., Phosphorylation, Inhibition), and optional constraints on the types of up/downstream entities that are of interest.
Together with the query, at least one model needs to be selected for the query submission to be valid.

2.5. EMMAA Model Queries 33

EMMAA Documentation, Release 1.16.0

Fig. 24: The query ready to be submitted that asks what small molecules inhibit ACE2 in Covid-19 model

If the query is badly formatted or is missing information, an error will be shown stating the type of error.

Viewing the results

The query service will receive the query and return a response which is displayed in the Query Results table below.
Query results are presented as a grid of green, red and grey marks. A green check mark is shown for queries that
passed and a red cross is shown for the queries that did not. Grey cirlce will be shown for queries not applicable for
selected model. The marks can be clicked on and link to a EMMAA Detailed Test or Query Results page where the
detailed path(s) or a reason for the model not having passed the query will be shown.

Fig. 25: The above query resolved, showing the result per model and model type. Detailed results can be viewed by
clicking on a green/red mark. Grey circles mean that these model types are not available for a selected model.

2.5.6 Waiting for results

For either of the query types the page displays “Waiting for server response” and a loader bar while the query is being
executed. The typical response time can be up to a minute so please be patient when posting queries.

2.5.7 Logging In and Registering a User

A user can log in by clicking the “Login” button to the right on the navigation bar. When clicking the login button, an
overlay shows up asking for credentials. A user can also create an account by clicking “Register” if they don’t already
have an account.

34 Chapter 2. EMMAA Dashboard

EMMAA Documentation, Release 1.16.0

Fig. 26: While the query resolves, a small animation is shown.

The login and registration tabs of the login overlay.

2.5.8 Subscribing to a Query

When logged in, a user can register a query for subscription. To register a subscription to a query, the tick box
for “Subscribe To Query” has to be ticked when the query is submitted. Both static and dynamic queries can be
subscribed to. After submission, the query is associated with the logged in user. When returning to the page, the
subscribed queries will be loaded together with their latest results.

2.5.9 Email Notifications of Subscribed Queries

If a user subscribes to a query, they are also signed up for daily email updates that will be sent out if there is an update
to any of the subscribed queries. An update to a query is defined as there being a change in the associated model that

2.5. EMMAA Model Queries 35

EMMAA Documentation, Release 1.16.0

Fig. 27: The table for subscribed queries, here for the query Activation(FLT3, KRAS) of the AML cancer model.

answers the query. The email lists the updates by query type, query, model and model type. If are no updates for
one of the query types, only the query type that has any updates will be shown. For static queries, a direct link to the
detailed query results is provided.

Fig. 28: An example of an email notification for a query. Here, an update to the query Activation(FLT3, KRAS) of
the Ras Machine model of the PyBEL model type is shown under “static queries”. The unsubscribe link at the bottom
links out to the unsubscribe page (see below).

Unsubscribing From Query Notifications

In every email notification there is an unsubscribe link in the footer of the email. To unsubscribe from queries, follow
the link to the unsubscribe page. On the unsubscribe page, all active subscriptions for the associated email are shown
with tick boxes for each subscription and one tick box for unsubscribing from all subscribe queries. After ticking the
appropriate boxes and submitting the unsubscribe request, a message will be shown describing the status of the request
once it resolves.

2.6 Failing test/query result interpretation

Model tests and queries can sometimes fail to produce an explicit result (i.e., a sequence of mechanisms constituting
an answer to a query). There are several possible reasons for this. Below, we explain the various result “codes” that
can appear on the model tests and query pages.

• Path found but exceeds search depth - Path is found, but the search depth is reached. Search depth is the
maximum number of steps taken to reach the object from the subject in the graph representation of the model.

• Statement subject not in model - The subject of the query or statement doesn’t exist in the model.

36 Chapter 2. EMMAA Dashboard

EMMAA Documentation, Release 1.16.0

Fig. 29: An example of how the unsubscribe page looks like. All subscribed queries for a given user is shown. Each
query can be individually marked for unsubscription. All queries can be unsubscribed simultaneously by ticking the
box for “unsubscribe from all”

2.6. Failing test/query result interpretation 37

EMMAA Documentation, Release 1.16.0

• Statement object state not in model - The object state of the query or statement does not exist in the model.

• Query is not applicable for this model - Only used for queries.

• No path found that satisfies the test statement - Only used for tests.

• Statement type not handled - The statement type is not valid. Currently supported types:

– Activation

– Inhibition

– IncreaseAmount

– DecreaseAmount

– Acetylation

– Farnesylation

– Geranylgeranylation

– Glycosylation

– Hydroxylation

– Methylation

– Myristoylation

– Palmitoylation

– Phosphorylation

– Ribosylation

– Sumoylation

– Ubiquitination

– Deacetylation

– Defarnesylation

– Degeranylgeranylation

– Deglycosylation

– Dehydroxylation

– Demethylation

– Demyristoylation

– Depalmitoylation

– Dephosphorylation

– Deribosylation

– Desumoylation

– Deubiquitination

38 Chapter 2. EMMAA Dashboard

EMMAA Documentation, Release 1.16.0

2.7 EMMAA Detailed Test or Query Results

The detailed test results page shows a test result at in high detail for a specific model and model type. The left column
describes the paths found that satisfies the test. Note that the same test/query can be explained with multiple different
paths. The right column contains a detailed description of each edge in the path with a list of english representation of
the statements supporting the edge. If a test did not pass, a message explaining why it did not pass is shown.

Fig. 30: The detailed test results for “FLT3 activates KRAS”. The left column displays the two paths that satisfy the
test for the model and model type. The right column gives detailed information for each of the edges, including its
support, for each path.

2.7.1 Results for Different Model Types

The navigation bar contains a drop down menu where another model type can be selected. After selecting the model
type to switch to, click on “Load Type” to load the same model test with the selected model type. Note that only model
types available for the specific model are available in the menu.

Fig. 31: The drop down menu shows the other available model types for the test on the model.

2.7. EMMAA Detailed Test or Query Results 39

EMMAA Documentation, Release 1.16.0

2.7.2 Non-passing Tests

When a test fails, the detailed test page show a message that describes why the test failed instead of results. For more
details see Failing test/query result interpretation

Fig. 32: The test did not pass and a message is shown describing why.

40 Chapter 2. EMMAA Dashboard

CHAPTER 3

EMMAA modules reference

3.1 EMMAA Statement (emmaa.statements)

class emmaa.statements.EmmaaStatement(stmt, date, search_terms, metadata=None)
Bases: object

Represents an EMMAA Statement.

Parameters

• stmt (indra.statements.Statement) – An INDRA Statement

• date (datetime) – A datetime object that is attached to the Statement. Typically repre-
sents the time at which the Statement was created.

• search_terms (list[emmaa.priors.SearchTerm]) – The list of search terms
that led to the creation of the Statement.

• metadata (dict) – Additional metadata for the statement.

emmaa.statements.add_emmaa_annotations(indra_stmt, annotation)
Add EMMAA annotations to inner INDRA statement.

emmaa.statements.check_stmt(stmt, conditions, evid_policy=’any’)
Decide whether a statement meets the conditions.

Parameters

• stmt (indra.statements.Statement) – INDRA Statement that should be checked
for conditions.

• conditions (dict) – Conditions represented as key-value pairs that statements’ meta-
data can be compared to. NOTE if there are multiple conditions provided, the function will
require that all conditions are met to return True.

• evid_policy (str) – Policy for checking statement’s evidence objects. If ‘all’, then
the function returns True only if all of statement’s evidence objects meet the conditions. If

41

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

EMMAA Documentation, Release 1.16.0

‘any’, the function returns True as long as at least one of statement’s evidences meets the
conditions.

Returns meets_conditions – Whether the Statement meets the conditions.

Return type bool

emmaa.statements.filter_emmaa_stmts_by_metadata(estmts, conditions)
Filter EMMAA statements to those where conditions are met.

Parameters

• estmts (list[emmaa.statements.EmmaaStatement]) – A list of EMMAA
Statements to filter.

• conditions (dict) – Conditions to filter on represented as key-value pairs that state-
ments’ metadata can be compared to. NOTE if there are multiple conditions provided, the
function will require that all conditions are met to keep a statement.

Returns estmts_out – A list of EMMAA Statements which meet the conditions.

Return type list[emmaa.statements.EmmaaStatement]

emmaa.statements.filter_indra_stmts_by_metadata(stmts, conditions, evid_policy=’any’)
Filter INDRA statements to those where conditions are met.

Parameters

• stmts (list[indra.statements.Statement]) – A list of INDRA Statements to
filter.

• conditions (dict) – Conditions to filter on represented as key-value pairs that state-
ments’ metadata can be compared to. NOTE if there are multiple conditions provided, the
function will require that all conditions are met to keep a statement.

• evid_policy (str) – Policy for checking statement’s evidence objects. If ‘all’, then
the statement is kept only if all of it’s evidence objects meet the conditions. If ‘any’, the
statement is kept as long as at least one of its evidences meets the conditions.

Returns stmts_out – A list of INDRA Statements which meet the conditions.

Return type list[indra.statements.Statement]

emmaa.statements.is_internal(stmt)
Check if statement has any internal evidence.

emmaa.statements.to_emmaa_stmts(stmt_list, date, search_terms, metadata=None)
Make EMMAA statements from INDRA Statements with the given metadata.

3.2 EMMAA Model (emmaa.model)

class emmaa.model.EmmaaModel(name, config, paper_ids=None)
Bases: object

Represents an EMMAA model.

Parameters

• name (str) – The name of the model.

• config (dict) – A configuration dict that is typically loaded from a YAML file.

42 Chapter 3. EMMAA modules reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

EMMAA Documentation, Release 1.16.0

• paper_ids (list(str) or None) – A list of paper IDs used to get statements for
the current state of the model. With new reading results, new paper IDs will be added. If
not provided, initial set will be derived from existing statements.

stmts
A list of EmmaaStatement objects representing the model

Type list[emmaa.EmmaaStatement]

assembly_config
Configurations for assembling the model.

Type dict

test_config
Configurations for running tests on the model.

Type dict

reading_config
Configurations for reading the content.

Type dict

query_config
Configurations for running queries on the model.

Type dict

search_terms
A list of SearchTerm objects containing the search terms used in the model.

Type list[emmaa.priors.SearchTerm]

ndex_network
The identifier of the NDEx network corresponding to the model.

Type str

assembled_stmts
A list of assembled INDRA Statements

Type list[indra.statements.Statement]

add_paper_ids(initial_ids, id_type=’pmid’)
Convert if needed and save paper IDs.

Parameters

• initial_ids (set(str)) – A set of paper IDs.

• id_type (str) – What type the given IDs are (e.g. pmid, doi, pii). All IDs except for
PIIs will be converted into TextRef IDs before saving.

add_statements(stmts)
Add a set of EMMAA Statements to the model

Parameters stmts (list[emmaa.EmmaaStatement]) – A list of EMMAA Statements
to add to the model

assemble_dynamic_pysb(mode=’local’, bucket=’emmaa’)
Assemble a version of a PySB model for dynamic simulation.

assemble_pybel(mode=’local’, bucket=’emmaa’)
Assemble the model into PyBEL and return the assembled model.

3.2. EMMAA Model (emmaa.model) 43

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list

EMMAA Documentation, Release 1.16.0

assemble_pysb(mode=’local’, bucket=’emmaa’)
Assemble the model into PySB and return the assembled model.

assemble_signed_graph(mode=’local’, bucket=’emmaa’)
Assemble the model into signed graph and return the assembled graph.

assemble_unsigned_graph(**kwargs)
Assemble the model into unsigned graph and return the assembled graph.

eliminate_copies()
Filter out exact copies of the same Statement.

extend_unique(estmts)
Extend model statements only if it is not already there.

get_assembled_entities()
Return a list of Agent objects that the assembled model contains.

get_entities()
Return a list of Agent objects that the model contains.

get_indra_stmts()
Return the INDRA Statements contained in the model.

Returns The list of INDRA Statements that are extracted from the EMMAA Statements.

Return type list[indra.statements.Statement]

get_new_readings(date_limit=10)
Search new literature, read, and add to model statements

get_paper_ids_from_stmts(stmts)
Get initial set of paper IDs from a list of statements.

Parameters stmts (list[emmaa.statements.EmmaaStatement]) – A list of EM-
MAA statements to create the mappings from.

classmethod load_from_s3(model_name, bucket=’emmaa’)
Load the latest model state from S3.

Parameters model_name (str) – Name of model to load. This function ex-
pects the latest model to be found on S3 in the emmaa bucket with key
‘models/{model_name}/model_{date_string}’, and the model config file at ‘mod-
els/{model_name}/config.json’.

Returns Latest instance of EmmaaModel with the given name, loaded from S3.

Return type emmaa.model.EmmaaModel

run_assembly()
Run INDRA’s assembly pipeline on the Statements.

save_to_s3(bucket=’emmaa’)
Dump the model state to S3.

static search_biorxiv(collection_id, date_limit)
Search BioRxiv within date_limit.

Parameters

• date_limit (int) – The number of days to search back from today.

• collection_id (str) – ID of a collection to search BioArxiv for.

44 Chapter 3. EMMAA modules reference

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

EMMAA Documentation, Release 1.16.0

Returns terms_to_dois – A dict representing biorxiv collection ID as key and DOIs returned by
search as values.

Return type dict

static search_elsevier(search_terms, date_limit)
Search Elsevier for given search terms.

Parameters

• search_terms (list[emmaa.priors.SearchTerm]) – A list of SearchTerm
objects to search PubMed for.

• date_limit (int) – The number of days to search back from today.

Returns terms_to_piis – A dict representing given search terms as keys and PIIs returned by
searches as values.

Return type dict

search_literature(lit_source, date_limit=None)
Search for the model’s search terms in the literature.

Parameters date_limit (Optional[int]) – The number of days to search back from
today.

Returns ids_to_terms – A dict representing all the literature source IDs (e.g., PMIDs or PIIS)
returned by the searches as keys, and the search terms for which the given ID was produced
as values.

Return type dict

static search_pubmed(search_terms, date_limit)
Search PubMed for given search terms.

Parameters

• search_terms (list[emmaa.priors.SearchTerm]) – A list of SearchTerm
objects to search PubMed for.

• date_limit (int) – The number of days to search back from today.

Returns terms_to_pmids – A dict representing given search terms as keys and PMIDs returned
by searches as values.

Return type dict

to_json()
Convert the model into a json dumpable dictionary

update_from_disease_map(disease_map_config)
Update model by processing MINERVA Disease Map.

Relevant part of reading config should look similar to:

{“disease_map”: { “map_name”: “covid19map”, “filenames” : “all”, # or a list of filenames “metadata”:
{

“internal”: true }

}

}

update_from_files(files_config)
Add custom statements from files.

3.2. EMMAA Model (emmaa.model) 45

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict

EMMAA Documentation, Release 1.16.0

Relevant part of reading config should look similar to:

{“other_files”: [

{ “bucket”: “indra-covid19”, “filename”: “ctd_stmts.pkl”, “metadata”: {“internal”: true, “curated”:
true}

}

update_to_ndex()
Update assembled model as CX on NDEx, updates existing network.

update_with_cord19(cord19_config)
Update model with new CORD19 dataset statements.

Relevant part of reading config should look similar to:

{“cord19_update”: {

“metadata”: { “internal”: true, “curated”: false },

“date_limit”: 5 }

}

upload_to_ndex()
Upload the assembled model as CX to NDEx, creates new network.

emmaa.model.get_assembled_statements(model, date=None, bucket=’emmaa’)
Load and return a list of assembled statements.

Parameters

• model (str) – A name of a model.

• date (str or None) – Date in “YYYY-MM-DD” format for which to load the state-
ments. If None, loads the latest available statements.

• bucket (str) – Name of S3 bucket to look for a file. Defaults to ‘emmaa’.

Returns

• stmts (list[indra.statements.Statement]) – A list of assembled statements.

• latest_file_key (str) – Key of a file with statements on s3.

emmaa.model.get_model_stats(model, mode, tests=None, date=None, extension=’.json’, n=0,
bucket=’emmaa’)

Gets the latest statistics for the given model

Parameters

• model (str) – Model name to look for

• mode (str) – Type of stats to generate (model or test)

• tests (str) – A name of a test corpus. Default is large_corpus_tests.

• date (str or None) – Date for which the stats will be returned in “YYYY-MM-DD”
format.

• extension (str) – Extension of the file.

• n (int) – Index of the file in list of S3 files sorted by date (0-indexed).

• bucket (str) – Name of bucket on S3.

Returns model_data – The json formatted data containing the statistics for the model

46 Chapter 3. EMMAA modules reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

EMMAA Documentation, Release 1.16.0

Return type json

emmaa.model.last_updated_date(model, file_type=’model’, date_format=’date’,
tests=’large_corpus_tests’, extension=’.pkl’, n=0,
bucket=’emmaa’)

Find the most recent or the nth file of given type on S3 and return its creation date.

Example file name: models/aml/model_2018-12-13-18-11-54.pkl

Parameters

• model (str) – Model name to look for

• file_type (str) – Type of a file to find the latest file for. Accepted values: ‘model’,
‘test_results’, ‘model_stats’, ‘test_stats’.

• date_format (str) – Format of the returned date. Accepted values are ‘datetime’ (re-
turns a date in the format “YYYY-MM-DD-HH-mm-ss”) and ‘date’ (returns a date in the
format “YYYY-MM-DD”). Default is ‘date’.

• extension (str) – The extension the model file needs to have. Default is ‘.pkl’

• n (int) – Index of the file in list of S3 files sorted by date (0-indexed).

• bucket (str) – Name of bucket on S3.

Returns last_updated – A string of the selected format.

Return type str

emmaa.model.load_config_from_s3(model_name, bucket=’emmaa’)
Return a JSON dict of config settings for a model from S3.

Parameters model_name (str) – The name of the model whose config should be loaded.

Returns config – A JSON dictionary of the model configuration loaded from S3.

Return type dict

emmaa.model.load_stmts_from_s3(model_name, bucket=’emmaa’)
Return the list of EMMAA Statements constituting the latest model.

Parameters model_name (str) – The name of the model whose config should be loaded.

Returns stmts – The list of EMMAA Statements in the latest model version.

Return type list of emmaa.statements.EmmaaStatement

emmaa.model.pysb_to_gromet(pysb_model, model_name, statements=None, fname=None)
Convert PySB model to GroMEt object and save it to a JSON file.

Parameters

• pysb_model (pysb.Model) – PySB model object.

• model_name (str) – A name of EMMAA model.

• statements (Optional[list[indra.statements.Statement]]) – A list of
INDRA Statements a PySB model was assembled from. If provided the statement hashes
will be propagated into GroMEt metadata.

• fname (Optional[str]) – If given, the GroMEt will be dumped into JSON file.

Returns g – A GroMEt object built from PySB model.

Return type automates.script.gromet.gromet.Gromet

3.2. EMMAA Model (emmaa.model) 47

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

EMMAA Documentation, Release 1.16.0

emmaa.model.save_config_to_s3(model_name, config, bucket=’emmaa’)
Upload config settings for a model to S3.

Parameters

• model_name (str) – The name of the model whose config should be saved to S3.

• config (dict) – A JSON dict of configurations for the model.

3.3 EMMAA Model Test Framework (emmaa.model_tests)

This module implements the object model for EMMAA model testing.

class emmaa.model_tests.EmmaaTest
Bases: object

Represent an EMMAA test condition

get_entities()
Return a list of entities that the test checks for.

class emmaa.model_tests.ModelManager(model, mode=’local’)
Bases: object

Manager to generate and store properties of a model and relevant tests.

Parameters

• model (emmaa.model.EmmaaModel) – EMMAA model

• mode (str) – If ‘local’ (default), does not save any exports/images to S3. It is only set to
‘s3’ mode in update_model_manager.py script.

mc_mapping
A dictionary mapping a ModelChecker type to a corresponding method for assembling the model and a
ModelChecker class.

Type dict

mc_types
A dictionary in which each key is a type of a ModelChecker and value is a dictionary containing an instance
of a model, an instance of a ModelChecker and a list of test results.

Type dict

entities
A list of entities of EMMAA model.

Type list[indra.statements.agent.Agent]

applicable_tests
A list of EMMAA tests applicable for given EMMAA model.

Type list[emmaa.model_tests.EmmaaTest]

date_str
Time when this object was created.

Type str

path_stmt_types
A dictionary mapping statement hashes to a count of paths they are in.

Type dict

48 Chapter 3. EMMAA modules reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

EMMAA Documentation, Release 1.16.0

add_result(mc_type, result)
Add a result to a list of results.

add_test(test)
Add a test to a list of applicable tests.

answer_dynamic_query(query, bucket=’emmaa’)
Answer user query by simulating a PySB model.

answer_intervention_query(query, bucket=’emmaa’)
Answer user intervention query by simulating a PySB model.

answer_open_query(query)
Answer user open search query with found paths.

answer_path_query(query)
Answer user query with a path if it is found.

answer_queries(queries, **kwargs)
Answer all queries registered for this model.

Parameters queries (list[emmaa.queries.Query]) – A list of queries to run.

Returns responses – A list of tuples each containing a query, mc_type and result json.

Return type list[tuple(json, json)]

get_updated_mc(mc_type, stmts, add_ns=False, edge_filter_func=None)
Update the ModelChecker and graph with stmts for tests/queries.

hash_response_list(response)
Return a dictionary mapping a hash with a response in a response list.

process_response(mc_type, result)
Return a dictionary in which every key is a hash and value is a list of tuples. Each tuple contains a sentence
describing either a step in a path (if it was found) or result code (if a path was not found) and a link leading
to a webpage with more information about corresponding sentence.

results_to_json(test_data=None)
Put test results to json format.

run_all_tests(filter_func=None, edge_filter_func=None)
Run all applicable tests with all available ModelCheckers.

run_tests_per_mc(mc_type, max_path_length, max_paths, filter_func=None,
edge_filter_func=None)

Run all applicable tests with one ModelChecker.

save_assembled_statements(bucket=’emmaa’)
Upload assembled statements jsons to S3 bucket.

upload_results(test_corpus=’large_corpus_tests’, test_data=None, bucket=’emmaa’)
Upload results to s3 bucket.

class emmaa.model_tests.RefinementTestConnector
Bases: emmaa.model_tests.TestConnector

Determines applicability of a test to a model by checking if test entities or their refinements are in the model.

static applicable(model, test)
Return True of all test entities are in the set of model entities

class emmaa.model_tests.ScopeTestConnector
Bases: emmaa.model_tests.TestConnector

3.3. EMMAA Model Test Framework (emmaa.model_tests) 49

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple

EMMAA Documentation, Release 1.16.0

Determines applicability of a test to a model by overlap in scope.

static applicable(model, test)
Return True of all test entities are in the set of model entities

class emmaa.model_tests.StatementCheckingTest(stmt, configs=None)
Bases: emmaa.model_tests.EmmaaTest

Represent an EMMAA test condition that checks a PySB-assembled model against an INDRA Statement.

check(model_checker, pysb_model)
Use a model checker to check if a given model satisfies the test.

get_entities()
Return a list of entities that the test checks for.

class emmaa.model_tests.TestConnector
Bases: object

Determines if a given test is applicable to a given model.

static applicable(model, test)
Return True if the test is applicable to the given model.

class emmaa.model_tests.TestManager(model_managers, tests)
Bases: object

Manager to generate and run a set of tests on a set of models.

Parameters

• model_managers (list[emmaa.model_tests.ModelManager]) – A list of
ModelManager objects

• tests (list[emmaa.model_tests.EmmaaTest]) – A list of EMMAA tests

make_tests(test_connector)
Generate a list of applicable tests for each model with a given test connector.

Parameters test_connector (emmaa.model_tests.TestConnector) – A Test-
Connector object to use for connecting models to tests.

run_tests(filter_func=None, edge_filter_func=None)
Run tests for a list of model-test pairs

emmaa.model_tests.load_tests_from_s3(test_name, bucket=’emmaa’)
Load Emmaa Tests with the given name from S3.

Parameters test_name (str) – Looks for a test file in the emmaa bucket on S3 with key
‘tests/{test_name}’.

Returns List of EmmaaTest objects loaded from S3.

Return type list of EmmaaTest

emmaa.model_tests.model_to_tests(model_name, upload=True, bucket=’emmaa’)
Create StatementCheckingTests from model statements.

emmaa.model_tests.run_model_tests_from_s3(model_name, test_corpus=’large_corpus_tests’,
upload_results=True, bucket=’emmaa’)

Run a given set of tests on a given model, both loaded from S3.

After loading both the model and the set of tests, model/test overlap is determined using a ScopeTestConnector
and tests are run.

Parameters

50 Chapter 3. EMMAA modules reference

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

EMMAA Documentation, Release 1.16.0

• model_name (str) – Name of EmmaaModel to load from S3.

• test_corpus (str) – Name of the file containing tests on S3.

• upload_results (Optional[bool]) – Whether to upload test results to S3 in JSON
format. Can be set to False when running tests. Default: True

Returns Instance of ModelManager containing the model data, list of applied tests and the test
results.

Return type emmaa.model_tests.ModelManager

emmaa.model_tests.save_tests_to_s3(tests, bucket, key, save_format=’pkl’)
Save tests in pkl, json or jsonl format.

3.4 Analyze model test results (emmaa.analyze_tests_results)

class emmaa.analyze_tests_results.ModelRound(statements, date_str, paper_ids=None,
paper_id_type=’TRID’, em-
maa_statements=None)

Bases: emmaa.analyze_tests_results.Round

Analyzes the results of one model update round.

Parameters

• statements (list[indra.statements.Statement]) – A list of INDRA State-
ments used to assemble a model.

• date_str (str) – Time when ModelManager responsible for this round was created.

• paper_ids (list(str)) – A list of paper IDs used to get raw statements for this round.

• paper_id_type (str) – Type of paper ID used.

stmts_by_papers
A dictionary mapping the paper IDs to sets of hashes of assembled statements with evidences retrieved
from these papers.

Type dict

get_agent_distribution()
Return a sorted list of tuples containing an agent name and a number of times this agent occured in state-
ments of a model.

get_all_raw_paper_ids()
Return all paper IDs used in this round.

get_assembled_stmts_by_paper(id_type=’TRID’)
Get a mapping of paper IDs (TRID or PII) to assembled statements.

get_english_statements_by_hash()
Return a dictionary mapping a statement and its English description.

get_number_raw_papers()
Return a total number of papers in this round.

get_paper_titles_and_links(trids)
Return a dictionary mapping paper IDs to their titles.

get_papers_distribution()
Return a sorted list of tuples containing a paper ID and a number of unique statements extracted from that
paper.

3.4. Analyze model test results (emmaa.analyze_tests_results) 51

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

EMMAA Documentation, Release 1.16.0

get_statement_types()
Return a sorted list of tuples containing a statement type and a number of times a statement of this type
occured in a model.

get_statements_by_evidence()
Return a sorted list of tuples containing a statement hash and a number of times this statement occured in
a model.

get_stmt_hashes()
Return a list of hashes for all statements in a model.

get_total_statements()
Return a total number of statements in a model.

class emmaa.analyze_tests_results.ModelStatsGenerator(model_name, lat-
est_round=None, previ-
ous_round=None, pre-
vious_json_stats=None,
bucket=’emmaa’)

Bases: emmaa.analyze_tests_results.StatsGenerator

Generates statistic for a given model update round.

Parameters

• model_name (str) – A name of a model the tests were run against.

• latest_round (emmaa.analyze_tests_results.ModelRound) – An instance
of a ModelRound to generate statistics for. If not given, will be generated by loading model
data from s3.

• previous_round (emmaa.analyze_tests_results.ModelRound) – A differ-
ent instance of a ModelRound to find delta between two rounds. If not given, will be gener-
ated by loading model data from s3.

• previous_json_stats (list[dict]) – A JSON-formatted dictionary containing
model statistics for previous update round.

json_stats
A JSON-formatted dictionary containing model statistics.

Type dict

make_changes_over_time()
Add changes to model over time to json_stats.

make_curation_summary()
Add latest curation summary to json_stats.

make_model_delta()
Add model delta between two latest model states to json_stats.

make_model_summary()
Add latest model state summary to json_stats.

make_paper_delta()
Add paper delta between two latest model states to json_stats.

make_paper_summary()
Add latest paper summary to json_stats.

52 Chapter 3. EMMAA modules reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

EMMAA Documentation, Release 1.16.0

make_stats()
Check if two latest model rounds were found and add statistics to json_stats dictionary. If both lat-
est round and previous round were passed or found on s3, a dictionary will have three key-value pairs:
model_summary, model_delta, and changes_over_time.

class emmaa.analyze_tests_results.Round(date_str)
Bases: object

Parent class for classes analyzing one round of something (model or tests).

Parameters date_str (str) – Time when ModelManager responsible for this round was created.

function_mapping
A dictionary of strings mapping a type of content to a tuple of functions necessary to find delta for this
type of content. First function in a tuple gets a list of all hashes for a given content type, while the second
returns an English description of a given content type for a single hash.

Type dict

find_delta_hashes(other_round, content_type, **kwargs)
Return a dictionary of changed hashes of a given content type. This method makes use of
self.function_mapping dictionary.

Parameters

• other_round (emmaa.analyze_tests_results.TestRound) – A different
instance of a TestRound

• content_type (str) – A type of the content to find delta. Accepted values: - state-
ments - applied_tests - passed_tests - paths

• **kwargs (dict) – For some of content types, additional arguments must be provided
sych as mc_type.

Returns hashes – A dictionary containing lists of added and removed hashes of a given content
type between two test rounds.

Return type dict

class emmaa.analyze_tests_results.StatsGenerator(model_name, latest_round=None,
previous_round=None, pre-
vious_json_stats=None,
bucket=’emmaa’)

Bases: object

Parent class for classes generating statistic for a given round of tests or model update.

Parameters

• model_name (str) – A name of a model the tests were run against.

• latest_round (ModelRound or TestRound or None) – An instance of a Mod-
elRound or TestRound to generate statistics for. If not given, will be generated by loading
json from s3.

• previous_round (ModelRound or TestRound or None) – A different in-
stance of a ModelRound or TestRound to find delta between two rounds. If not given,
will be generated by loading json from s3.

• previous_json_stats (dict) – A JSON-formatted dictionary containing model or
test statistics for the previous round.

json_stats
A JSON-formatted dictionary containing model or test statistics.

3.4. Analyze model test results (emmaa.analyze_tests_results) 53

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict

EMMAA Documentation, Release 1.16.0

Type dict

make_changes_over_time()
Add changes to model and tests over time to json_stats.

class emmaa.analyze_tests_results.TestRound(json_results, date_str)
Bases: emmaa.analyze_tests_results.Round

Analyzes the results of one test round.

Parameters

• json_results (list[dict]) – A list of JSON formatted dictionaries to store infor-
mation about the test results. The first dictionary contains information about the model.
Each consecutive dictionary contains information about a single test applied to the model
and test results.

• date_str (str) – Time when ModelManager responsible for this round was created.

mc_types_results
A dictionary mapping a type of a ModelChecker to a list of test results generated by this ModelChecker

Type dict

tests
A list of INDRA Statements used to make EMMAA tests.

Type list[indra.statements.Statement]

english_test_results
A dictionary mapping a test hash and a list containing its English description, result in Pass/Fail/n_a form
and either a path if it was found or a result code if it was not.

Type dict

get_applied_test_hashes()
Return a list of hashes for all applied tests.

get_number_passed_tests(mc_type=’pysb’)
Return a number of all passed tests.

get_passed_test_hashes(mc_type=’pysb’)
Return a list of hashes for passed tests.

get_total_applied_tests()
Return a number of all applied tests.

passed_over_total(mc_type=’pysb’)
Return a ratio of passed over total tests.

class emmaa.analyze_tests_results.TestStatsGenerator(model_name,
test_corpus_str=’large_corpus_tests’,
latest_round=None, pre-
vious_round=None, pre-
vious_json_stats=None,
bucket=’emmaa’)

Bases: emmaa.analyze_tests_results.StatsGenerator

Generates statistic for a given test round.

Parameters

• model_name (str) – A name of a model the tests were run against.

• test_corpus_str (str) – A name of a test corpus the model was tested against.

54 Chapter 3. EMMAA modules reference

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

EMMAA Documentation, Release 1.16.0

• latest_round (emmaa.analyze_tests_results.TestRound) – An instance
of a TestRound to generate statistics for. If not given, will be generated by loading test
results from s3.

• previous_round (emmaa.analyze_tests_results.TestRound) – A differ-
ent instance of a TestRound to find delta between two rounds. If not given, will be generated
by loading test results from s3.

• previous_json_stats (list[dict]) – A JSON-formatted dictionary containing
test statistics for previous test round.

json_stats
A JSON-formatted dictionary containing test statistics.

Type dict

make_changes_over_time()
Add changes to tests over time to json_stats.

make_stats()
Check if two latest test rounds were found and add statistics to json_stats dictionary. If both latest
round and previous round were passed or found on s3, a dictionary will have three key-value pairs:
test_round_summary, tests_delta, and changes_over_time.

make_test_summary()
Add latest test round summary to json_stats.

make_tests_delta()
Add tests delta between two latest test rounds to json_stats.

emmaa.analyze_tests_results.generate_stats_on_s3(model_name, mode,
test_corpus_str=’large_corpus_tests’,
upload_stats=True,
bucket=’emmaa’)

Generate statistics for latest round of model update or tests.

Parameters

• model_name (str) – A name of EmmaaModel.

• mode (str) – Type of stats to generate (model or tests)

• test_corpus_str (str) – A name of a test corpus.

• upload_stats (Optional[bool]) – Whether to upload latest statistics about model
and a test. Default: True

3.5 Query classes (emmaa.queries)

class emmaa.queries.ComparativeInterventionProperty
Bases: emmaa.queries.Query

class emmaa.queries.DynamicProperty(entity, pattern_type, quant_value=None,
quant_type=’qualitative’)

Bases: emmaa.queries.Query

This type of query requires dynamic simulation of the model to check whether the queried temporal pattern is
satisfied.

Parameters

• entity (indra.statements.Agent) – An entity to simulate the model for.

3.5. Query classes (emmaa.queries) 55

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

EMMAA Documentation, Release 1.16.0

• pattern_type (str) – Type of temporal pattern. Accepted values: ‘always_value’,
‘no_change’, ‘eventual_value’, ‘sometime_value’, ‘sustained’, ‘transient’.

• quant_value (str or float) – Value of molecular quantity of entity of interest. Can
be ‘high’ or ‘low’ or a specific number.

• quant_type (str) – Type of molecular quantity of entity of interest. Default: qualitative.

get_temporal_pattern(time_limit=None)
Return TemporalPattern object created with query properties.

exception emmaa.queries.GroundingError
Bases: Exception

class emmaa.queries.OpenSearchQuery(entity, stmt_type, entity_role, terminal_ns=None)
Bases: emmaa.queries.Query

This type of query requires doing an open ended breadth-first search to find paths satisfying the query.

Parameters

• entity (indra.statements.Agent) – An entity to simulate the model for.

• stmt_type (str) – Name of statement type.

• entity_role (str) – What role entity should play in statement (subject or object).

• terminal_ns (list[str]) – Force a path to terminate when any of the namespaces in
this list are encountered and only yield paths that terminate at these namepsaces

path_stmt
An INDRA statement having its subject or object set to None to represent open search query.

Type indra.statements.Statement

class emmaa.queries.PathProperty(path_stmt, entity_constraints=None, relation-
ship_constraints=None)

Bases: emmaa.queries.Query

This type of query requires finding a mechanistic causally consistent path that satisfies query statement.

Parameters

• path_stmt (indra.statements.Statement) – A path to look for in the model
represented as INDRA statement.

• entity_constraints (dict(list(indra.statements.Agent))) – A dictio-
nary containing lists of Agents to be included in or excluded from the path.

• relationship_constraints (dict(list(str))) – A dictionary containing lists
of Statement types to include in or exclude from the path.

get_entities()
Return entities from the path statement and the inclusion list.

class emmaa.queries.Query
Bases: object

The parent class of all query types.

class emmaa.queries.SimpleInterventionProperty(condition_entity, target_entity, direc-
tion)

Bases: emmaa.queries.Query

This type of query requires dynamic simulation of the model to observe the behavior under perturbation.

56 Chapter 3. EMMAA modules reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object

EMMAA Documentation, Release 1.16.0

class emmaa.queries.StructuralProperty
Bases: emmaa.queries.Query

emmaa.queries.get_agent_from_gilda(ag_name)
Return an INDRA Agent object by grounding its entity text with Gilda.

emmaa.queries.get_agent_from_text(ag_text)
Return an INDRA Agent object by grounding its entity text with either Gilda or TRIPS.

emmaa.queries.get_agent_from_trips(ag_text, service_host=’http://34.230.33.149:8002/cgi/’)
Return an INDRA Agent object by grounding its entity text with TRIPS.

3.6 Process model queries (emmaa.answer_queries)

class emmaa.answer_queries.QueryManager(db=None, model_managers=None)
Bases: object

Manager to run queries and interact with the database.

Parameters

• db (emmaa.db.EmmaaDatabaseManager) – An instance of a database manager to
use.

• model_managers (list[emmaa.model_tests.ModelManager]) – Optional
list of ModelManagers to use for running queries. If not given, the methods will load Mod-
elManager from S3 when needed.

answer_immediate_query(user_email, user_id, query, model_names, subscribe,
bucket=’emmaa’)

This method first tries to find saved result to the query in the database and if not found, runs ModelManager
method to answer query.

answer_registered_queries(model_name, bucket=’emmaa’)
Retrieve and asnwer registered queries

Retrieve queries registered on database for a given model, answer them, calculate delta between results
and put results to a database.

Parameters

• model_name (str) – The name of the model

• bucket (str) – The bucket to save the results to

get_registered_queries(user_email, query_type=’path_property’)
Get formatted results to queries registered by user.

retrieve_results_from_hashes(query_hashes, query_type=’path_property’, latest_order=1)
Retrieve results from a db given a list of query-model hashes.

emmaa.answer_queries.answer_queries_from_s3(model_name, db=None, bucket=’emmaa’)
Answer registered queries with model manager on s3.

Parameters

• model_name (str) – Name of EmmaaModel to answer queries for.

• db (Optional[emmaa.db.manager.EmmaaDatabaseManager]) – If given over-
rides the default primary database.

3.6. Process model queries (emmaa.answer_queries) 57

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

EMMAA Documentation, Release 1.16.0

emmaa.answer_queries.format_results(results, query_type=’path_property’)
Format db output to a standard json structure.

3.7 Priors (emmaa.priors)

This module contains classes to generate prior networks.

class emmaa.priors.SearchTerm(type, name, db_refs, search_term)
Bases: object

Represents a search term to be used in a model configuration.

Parameters

• type (str) – The type of search term, e.g. gene, bioprocess, other

• name (str) – The name of the search term, is equivalent to an Agent name

• db_refs (dict) – A dict of database references for the given term, is similar to an Agent
db_refs dict

• search_term (str) – The actual search term to us for searching PubMed

classmethod from_json(jd)
Return a SearchTerm object from JSON.

to_json()
Return search term as JSON.

emmaa.priors.get_drugs_for_gene(stmts, hgnc_id)
Get list of drugs that target a gene

Parameters

• stmts (list of indra.statements.Statement) – List of INDRA statements with a
drug as subject

• hgnc_id (str) – HGNC id for a gene

Returns drugs_for_gene – List of search terms for drugs targeting the input gene

Return type list of emmaa.priors.SearchTerm

3.7.1 Literature Prior (emmaa.priors.literature_prior)

This module implements the LiteraturePrior class which automates some of the steps involved in starting a model
around a set of literature searches. Example:

lp = LiteraturePrior('some_disease', 'Some Disease',
'This is a self-updating model of Some Disease',
search_strings=['some disease'],
assembly_config_template='nf')

estmts = lp.get_statements()
model = lp.make_model(estmts, upload_to_s3=True)

emmaa.priors.literature_prior.get_raw_statements_for_pmids(pmids, mode=’all’,
batch_size=100)

Return EmmaaStatements based on extractions from given PMIDs.

Parameters

58 Chapter 3. EMMAA modules reference

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

EMMAA Documentation, Release 1.16.0

• pmids (set or list of str) – A set of PMIDs to find raw INDRA Statements for
in the INDRA DB.

• mode ('all' or 'distilled') – The ‘distilled’ mode makes sure that the “best”,
non-redundant set of raw statements are found across potentially redundant text contents
and reader versions. The ‘all’ mode doesn’t do such distillation but is significantly faster.

• batch_size (Optional[int]) – Determines how many PMIDs to fetch statements
for in each iteration. Default: 100.

Returns A dict keyed by PMID with values INDRA Statements obtained from the given PMID.

Return type dict

emmaa.priors.literature_prior.make_search_terms(search_strings, mesh_ids)
Return EMMAA SearchTerms based on search strings and MeSH IDs.

Parameters

• search_strings (list of str) – A list of search strings e.g., “diabetes” to find
papers in the literature.

• mesh_ids (list of str) – A list of MeSH IDs that are used to search the literature as
headings associated with papers.

Returns A list of EMMAA SearchTerm objects constructed from the search strings and the MeSH
IDs.

Return type list of emmmaa.prior.SearchTerm

3.7.2 TCGA Cancer Prior (emmaa.priors.cancer_prior)

class emmaa.priors.cancer_prior.TcgaCancerPrior(tcga_study_prefix, sif_prior, dif-
fusion_service=None, muta-
tion_cache=None)

Bases: object

Prior network generation using TCGA mutations for a given cancer type.

This class implements building a prior network using a generic underlying prior, and TCGA data for a specific
cancer type. Mutations for the given cancer type are extracted from TCGA studies and heat diffusion from the
corresponding nodes in the prior is used to identify a set of relevant nodes.

static find_drugs_for_genes(node_list)
Return list of drugs targeting gene nodes.

get_mutated_genes()
Return dict of gene mutation frequencies based on TCGA studies.

get_relevant_nodes(pct_heat_threshold)
Return a list of the relevant nodes in the prior.

Heat diffusion is applied to the prior network based on initial heat on nodes that are mutated according to
patient statistics.

load_sif_prior(fname, e50=20)
Return a Graph based on a SIF file describing a prior.

Parameters

• fname (str) – Path to the SIF file.

3.7. Priors (emmaa.priors) 59

https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str

EMMAA Documentation, Release 1.16.0

• e50 (int) – Parameter for converting evidence counts into weights over the interval [0,
1) according to hyperbolic function weight = (count / (count + e50)).

make_prior(pct_heat_threshold=99)
Run the prior node list generation and return relevant nodes.

static search_terms_from_nodes(node_list)
Build a list of Pubmed search terms from the nodes returned by make_prior.

3.7.3 Gene List Prior (emmaa.priors.gene_list_prior)

class emmaa.priors.gene_list_prior.GeneListPrior(gene_list, name, hu-
man_readable_name)

Bases: object

Class to manage the construction of a model from a list of genes.

Parameters

• gene_list (list[str]) – A list of HGNC gene symbols

• name (str) – The name of the model (all lower case, no spaces or special characters)

• human_readable_name (str) – The human readable name (display name) of the
model

make_config()
Generate a configuration based on attributes.

make_gene_statements()
Generate Statements from the gene list.

make_model()
Make an EmmaaModel and upload it along with the config to S3.

make_search_terms(drug_gene_stmts=None)
Generate search terms from the gene list.

emmaa.priors.gene_list_prior.agent_from_gene_name(gene_name)
Return an Agent based on a gene name.

3.7.4 Reactome Prior (emmaa.priors.reactome_prior)

emmaa.priors.reactome_prior.find_drugs_for_genes(search_terms,
drug_gene_stmts=None)

Return list of drugs targeting at least one gene from a list of genes

Parameters search_terms (list of emmaa.priors.SearchTerm) – List of search terms for
genes

Returns drug_terms – List of search terms of drugs targeting at least one of the input genes

Return type list of emmaa.priors.SearchTerm

emmaa.priors.reactome_prior.get_genes_contained_in_pathway
Get all genes contained in a given pathway

Parameters reactome_id (str) – Reactome id for a pathway

Returns genes – List of uniprot ids for all unique genes contained in input pathway

Return type list of str

60 Chapter 3. EMMAA modules reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

EMMAA Documentation, Release 1.16.0

emmaa.priors.reactome_prior.get_pathways_containing_gene
“Get all ids for reactom pathways containing some form of an entity

Parameters reactome_id (str) – Reactome id for a gene

Returns pathway_ids – List of reactome ids for pathways containing the input gene

Return type list of str

emmaa.priors.reactome_prior.make_prior_from_genes(gene_list)
Return reactome prior based on a list of genes

Parameters gene_list (list of str) – List of HGNC symbols for genes

Returns res – List of search terms corresponding to all genes found in any reactome pathway con-
taining one of the genes in the input gene list

Return type list of emmaa.priors.SearchTerm

emmaa.priors.reactome_prior.rx_id_from_up_id
Return the Reactome Stable IDs for a given Uniprot ID.

emmaa.priors.reactome_prior.up_id_from_rx_id
Get the Uniprot ID (referenceEntity) for a given Reactome Stable ID.

3.7.5 Querying Prior Statements (emmaa.priors.prior_stmts)

emmaa.priors.prior_stmts.get_stmts_for_gene(gene)
Return all existing Statements for a given gene from the DB.

Parameters gene (str) – The HGNC symbol of a gene to query.

Returns A list of INDRA Statements in which the given gene is involved.

Return type list[indra.statements.Statement]

emmaa.priors.prior_stmts.get_stmts_for_gene_list(gene_list, other_entities)
Return all Statements between genes in a given list.

Parameters

• gene_list (list[str]) – A list of HGNC symbols for genes to query.

• other_entities (list[str]) – A list of other entities to keep as part of the set of
Statements.

Returns A list of INDRA Statements between the given list of genes and other entities specified.

Return type list[indra.statements.Statement]

3.8 Readers (emmaa.readers)

3.8.1 AWS reader (emmaa.readers.aws_reader)

emmaa.readers.aws_reader.read_pmid_search_terms(pmid_search_terms)
Return extracted EmmaaStatements given a PMID-search term dict.

Parameters pmid_search_terms (dict) – A dict representing a set of PMIDs pointing to
search terms that produced them.

Returns A list of EmmaaStatements extracted from the given PMIDs.

3.8. Readers (emmaa.readers) 61

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict

EMMAA Documentation, Release 1.16.0

Return type list[emmaa.model.EmmaaStatement]

emmaa.readers.aws_reader.read_pmids(pmids, date)
Return extracted INDRA Statements per PMID after running reading on AWS.

Parameters

• pmids (list[str]) – A list of PMIDs to read.

• date (datetime) – The date and time associated with the reading, typically the current
time.

Returns A dict of PMIDs and the list of Statements extracted for the given PMID by reading.

Return type dict[str, list[indra.statements.Statement]

3.8.2 INDRA DB client reader (emmaa.readers.db_client_reader)

emmaa.readers.db_client_reader.read_db_doi_search_terms(doi_search_terms)
Return extracted EmmaaStatements from INDRA database given a DOI-search term dict.

Parameters doi_search_terms (dict) – A dict representing a set of DOIs pointing to search
terms that produced them.

Returns A list of EmmaaStatements extracted from the given DOIs.

Return type list[emmaa.model.EmmaaStatement]

emmaa.readers.db_client_reader.read_db_ids_search_terms(id_search_terms, id_type)
Return extracted EmmaaStatements from INDRA database given an ID-search term dict.

Parameters id_search_terms (dict) – A dict representing a set of IDs pointing to search
terms that produced them.

Returns A list of EmmaaStatements extracted from the given IDs.

Return type list[emmaa.model.EmmaaStatement]

emmaa.readers.db_client_reader.read_db_pmid_search_terms(pmid_search_terms)
Return extracted EmmaaStatements from INDRA database given a PMID-search term dict.

Parameters pmid_search_terms (dict) – A dict representing a set of PMIDs pointing to
search terms that produced them.

Returns A list of EmmaaStatements extracted from the given PMIDs.

Return type list[emmaa.model.EmmaaStatement]

3.9 EMMAA’s Database (emmaa.db)

3.9.1 The Database Schema (emmaa.db.schema)

class emmaa.db.schema.User(**kwargs)
Bases: sqlalchemy.orm.decl_api.Base, emmaa.db.schema.EmmaaTable

A table containing users of EMMAA: User(_id_, email)

Parameters

• id (int) – (from indralab_auth_tools.src.models.User.id, primary key) A database-
generated integer from the User table in indralab auth tools.

62 Chapter 3. EMMAA modules reference

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int

EMMAA Documentation, Release 1.16.0

• email (str) – The email of the user (must be unique)

class emmaa.db.schema.Query(**kwargs)
Bases: sqlalchemy.orm.decl_api.Base, emmaa.db.schema.EmmaaTable

Queries run on each model: Query(_hash_, model_id, json, qtype)

The hash column is a hash generated from the json and model_id columns that can be derived from the

Parameters

• hash (big-int) – (primary key) A 32 bit integer generated from the json and model_id.

• model_id (str) – (20 character) The short id/acronym for the given model.

• json (json) – A json dict containing the relevant parameters defining the query.

class emmaa.db.schema.UserQuery(**kwargs)
Bases: sqlalchemy.orm.decl_api.Base, emmaa.db.schema.EmmaaTable

A table linking users to queries:

UserQuery(_id_, user_id, query_hash, date, subscription, count)

Parameters

• id (int) – (auto, primary key) A database-assigned integer id.

• user_id (int) – (foreign key -> User.id) The id of the user related to this query.

• query_hash (big-int) – (foreign key -> Query.hash) The hash of the query json, which
can be directly generated.

• date (datetime) – (auto) The date that this entry was added to the database.

• subscription (bool) – Record whether the user has subscribed to see results of this
model.

• count (int) – Record the number of times the user associated with user id has done this
query

class emmaa.db.schema.Result(**kwargs)
Bases: sqlalchemy.orm.decl_api.Base, emmaa.db.schema.EmmaaTable

Results of queries to models:

Result(_id_, query_hash, date, result_json, mc_type, all_result_hashes,
delta)

Parameters

• id (int) – (auto, primary key) A database-assigned integer id.

• query_hash (big-int) – (foreign key -> Query.hash) The hash of the query json, which
can be directly generated.

• date (datetime) – (auto) The date the result was entered into the database.

• result_json (json) – A json dict containing the results for the query.

• mc_type (str) – A name of a ModelChecker used to answer the query.

class emmaa.db.schema.UserModel(**kwargs)
Bases: sqlalchemy.orm.decl_api.Base, emmaa.db.schema.EmmaaTable

A table linking users to models:

UserModel(_id_, user_id, model_id, date, subscription)

3.9. EMMAA’s Database (emmaa.db) 63

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

EMMAA Documentation, Release 1.16.0

Parameters

• id (int) – (auto, primary key) A database-assigned integer id.

• user_id (int) – (foreign key -> User.id) The id of the user related to this query.

• model_id (str) – (20 character) The short id/acronym for the given model.

• date (datetime) – (auto) The date that this entry was added to the database.

• subscription (bool) – Record whether the user has subscribed to see results of this
model.

3.9.2 Database Manager (emmaa.db.manager)

class emmaa.db.manager.EmmaaDatabaseManager(host, label=None)
Bases: object

A class used to manage sessions with EMMAA’s database.

add_user(user_id, email)
Add a new user’s email and id to Emmaa’s User table.

create_tables(tables=None)
Create the tables from the EMMAA database

Optionally specify tables to be created. List may contain either table objects or the string names of the
tables.

drop_tables(tables=None, force=False)
Drop the tables from the EMMAA database given in tables.

If tables is None, all tables will be dropped. Note that if force is False, a warning prompt will be raised to
asking for confirmation, as this action will remove all data from that table.

get_all_result_hashes(qhash, mc_type)
Get a set of all result hashes for a given query and mc_type.

get_model_users(model_id)
Get all users who are subscribed to a given model.

Parameters model_id (str) – A standard name of a model to get users for.

Returns A list of email addresses corresponding to all users who are subscribed to this model.

Return type list[str]

get_queries(model_id)
Get queries that refer to the given model_id.

Parameters model_id (str) – The short, standard model ID.

Returns queries – A list of queries retrieved from the database.

Return type list[emmaa.queries.Query]

get_results(user_email, latest_order=1, query_type=None)
Get the results for which the user has registered.

Parameters

• user_email (str) – The email of a user.

• latest_order (int) – Which result in the order from the latest to get. Default: 1 (
latest).

64 Chapter 3. EMMAA modules reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

EMMAA Documentation, Release 1.16.0

• query_type (str) – Filter results to specific query type. Default: None (all query types
will be returned).

Returns results – A list of tuples, each of the form: (model_id, query, mc_type, result_json,
delta, date) representing the result of a query run on a model on a given date.

Return type list[tuple]

get_subscribed_queries(email)
Get a list of (query object, model id, query hash) for a user

Parameters email (str) – The email address to check subscribed queries for

Returns

Return type list(tuple(emmaa.queries.Query, str, query_hash))

get_subscribed_users()
Get all users who have subscriptions :returns: A list of email addresses corresponding to all users who
have

any subscribed query

Return type list[str]

get_user_models(email)
Get all models a user is subscribed to.

put_queries(user_email, user_id, query, model_ids, subscribe=True)
Add queries to the database for a given user.

Parameters

• user_email (str) – the email of the user that entered the queries.

• user_id (int) – the user id of the user that entered the queries. Corresponds to the user
id in the User table in indralab_auth_tools

• query (emmaa.queries.Query) – A query object containing all necessary informa-
tion.

• model_ids (list[str]) – A list of the short, standard model IDs to which the user
wishes to apply these queries.

• subscribe (bool) – True if the user wishes to subscribe to this query.

put_results(model_id, query_results)
Add new results for a set of queries tested on a model_id.

Parameters

• model_id (str) – The short, standard model ID.

• query_results (list of tuples) – A list of tuples of the form (query, mc_type,
result_json), where the query is the query object run against the model, mc_type is the
model type for the result, and the result_json is the json containing corresponding result.

subscribe_to_model(user_email, user_id, model_id)
Subsribe a user to model updates.

Parameters

• user_email (str) – the email of the user that entered the queries.

3.9. EMMAA’s Database (emmaa.db) 65

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

EMMAA Documentation, Release 1.16.0

• user_id (int) – the user id of the user that entered the queries. Corresponds to the user
id in the User table in indralab_auth_tools

• model_id (str) – Standard model ID to which the user wishes to subscribe.

update_email_subscription(email, queries, models, subscribe)
Update email subscriptions for user queries

NOTE: For now this method simply unsubscribes to the given queries but should in the future differentiated
into recieving email notifications or not and subscribing to queries or not.

Parameters

• email (str) – The email assocaited with the query

• queries (list(int)) – A list of query hashes.

• " list[str] (models) – A list of models.

• subscribe (bool) – The subscription status for all matching query hashes

Returns Return True if the update was successful, False otherwise

Return type bool

exception emmaa.db.manager.EmmaaDatabaseError
Bases: Exception

3.10 AWS model update and testing pipeline (emmaa.
aws_lambda_functions)

The AWS Lambda emmaa-update-pipeline definition.

This file contains the function that starts model update cycle. It must be placed on AWS Lambda, which can either be
done manually (not recommended) or by running:

$ python update_lambda.py update_pipeline.py emmaa-update-pipeline

in this directory.

emmaa.aws_lambda_functions.update_pipeline.lambda_handler(event, context)
Invoke individual model update functions.

This function iterates through all models contained on S3 bucket and calls a different Lambda function to run
model update for the models configured to be updated daily. It is expected that models have ‘run_model_update’
parameter in their config.json files.

This function is designed to be placed on AWS Lambda, taking the event and context arguments that are passed.
Note that this function must always have the same parameters, even if any or all of them are unused, because we
do not have control over what Lambda sends as parameters. Parameters are unused in this function.

Lambda is configured to automatically run this script every day.

See the top of the page for the Lambda update procedure.

Parameters

• event (dict) – A dictionary containing metadata regarding the triggering event.

• context (object) – This is an object containing potentially useful context provided by
Lambda. See the documentation cited above for details.

Returns ret – A response returned by the latest call to emmaa-model-update function.

66 Chapter 3. EMMAA modules reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#object

EMMAA Documentation, Release 1.16.0

Return type dict

The AWS Lambda emmaa-model-update definition.

This file contains the function that starts model update cycle. It must be placed on AWS Lambda, which can either be
done manually (not recommended) or by running:

$ python update_lambda.py model_updates.py emmaa-model-update

in this directory.

emmaa.aws_lambda_functions.model_updates.lambda_handler(event, context)
Create a batch job to update models on s3 and NDEx.

This function is designed to be placed on AWS Lambda, taking the event and context arguments that are passed.
Note that this function must always have the same parameters, even if any or all of them are unused, because
we do not have control over what Lambda sends as parameters. Event parameter is used to pass model_name
argument.

This Lambda function is configured to be invoked by emmaa-update-pipeline Lambda function.

See the top of the page for the Lambda update procedure.

Parameters

• event (dict) – A dictionary containing metadata regarding the triggering event. In this
case the dictionary contains model name.

• context (object) – This is an object containing potentially useful context provided by
Lambda. See the documentation cited above for details.

Returns ret – A dict containing ‘statusCode’, with a valid HTTP status code, ‘result’, and ‘job_id’
to be returned to Lambda.

Return type dict

The AWS Lambda emmaa-mm-update definition.

This file contains the function that updates model manager object in S3. It must be placed on AWS Lambda, which
can either be done manually (not recommended) or by running:

$ python update_lambda.py model_manager_update.py emmaa-mm-update

in this directory.

emmaa.aws_lambda_functions.model_manager_update.lambda_handler(event, context)
Create a batch job to update model manager on s3.

This function is designed to be placed on AWS Lambda, taking the event and context arguments that are passed.
Note that this function must always have the same parameters, even if any or all of them are unused, because we
do not have control over what Lambda sends as parameters. This Lambda function is configured to be triggered
when the model is updated on S3.

See the top of the page for the Lambda update procedure.

Parameters

• event (dict) – A dictionary containing metadata regarding the triggering event. In this
case, we are expecting ‘Records’, each of which contains a record of a file that was added
(or changed) on s3.

• context (object) – This is an object containing potentially useful context provided by
Lambda. See the documentation cited above for details.

Returns ret – A dict containing ‘statusCode’, with a valid HTTP status code, ‘result’, and ‘job_id’
to be returned to Lambda.

3.10. AWS model update and testing pipeline (emmaa.aws_lambda_functions) 67

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#object

EMMAA Documentation, Release 1.16.0

Return type dict

The AWS Lambda emmaa-after-update definition.

This file contains the function that will be run when Lambda is triggered. It must be placed on s3, which can either be
done manually (not recommended) or by running:

$ python update_lambda.py after_update.py emmaa-after-update

in this directory.

emmaa.aws_lambda_functions.after_update.lambda_handler(event, context)
Submit model tests, model and test stats, and query batch jobs.

This function is designed to be placed on AWS Lambda, taking the event and context arguments that are passed.
Note that this function must always have the same parameters, even if any or all of them are unused, because we
do not have control over what Lambda sends as parameters. Event parameter is used here to pass which model
manager was updated.

Lambda is configured to run this script when ModelManager object is updated.

Parameters

• event (dict) – A dictionary containing metadata regarding the triggering event. In this
case, we are expecting ‘Records’, each of which contains a record of a file that was added
(or changed) on s3.

• context (object) – This is an object containing potentially useful context provided by
Lambda. See the documentation cited above for details.

Returns ret – A dict containing ‘statusCode’, with a valid HTTP status code, and any other data to
be returned to Lambda.

Return type dict

The AWS Lambda emmaa-test-pipeline definition.

This file contains the function that will be run when Lambda is triggered. It must be placed on s3, which can either be
done manually (not recommended) or by running:

$ python update_lambda.py test_pipeline.py emmaa-test-pipeline

in this directory.

emmaa.aws_lambda_functions.test_pipeline.lambda_handler(event, context)
Invoke individual test corpus functions.

This function is designed to be placed on lambda, taking the event and context arguments that are passed. Event
parameter is used here to pass name of the model.

This Lambda function is configured to be invoked by emmaa-after-update Lambda function.

Parameters

• event (dict) – A dictionary containing metadata regarding the triggering event. In this
case the dictionary contains ‘model’ key.

• context (object) – This is an object containing potentially useful context provided by
Lambda. See the documentation cited above for details.

Returns ret – A response returned by the latest call to emmaa-model-test function.

Return type dict

68 Chapter 3. EMMAA modules reference

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#dict

EMMAA Documentation, Release 1.16.0

The AWS Lambda emmaa-model-test definition.

This file contains the function that will be run when Lambda is triggered. It must be placed on s3, which can either be
done manually (not recommended) or by running:

$ python update_lambda.py model_tests.py emmaa-model-test

in this directory.

emmaa.aws_lambda_functions.model_tests.lambda_handler(event, context)
Create a batch job to run model tests.

This function is designed to be placed on lambda, taking the event and context arguments that are passed. Event
parameter is used here to pass names of the model and of the test corpus.

This Lambda function is configured to be invoked by emmaa-test-pipeline Lambda function.

Parameters

• event (dict) – A dictionary containing metadata regarding the triggering event. In this
case the dictionary contains ‘model’ and ‘tests’ keys.

• context (object) – This is an object containing potentially useful context provided by
Lambda. See the documentation cited above for details.

Returns ret – A dict containing ‘statusCode’, with a valid HTTP status code, and any other data to
be returned to Lambda.

Return type dict

The AWS Lambda emmaa-test-stats definition.

This file contains the function that will be run when Lambda is triggered. It must be placed on s3, which can either be
done manually (not recommended) or by running:

$ python update_lambda.py test_stats.py emmaa-test-stats

in this directory.

emmaa.aws_lambda_functions.test_stats.lambda_handler(event, context)
Create a batch job to generate model statistics.

This function is designed to be placed on lambda, taking the event and context arguments that are passed, and
extracting the names of the uploaded (which includes changed) model or test definitions on s3. Lambda is
configured to be triggered by any such changes, and will automatically run this script.

Parameters

• event (dict) – A dictionary containing metadata regarding the triggering event. In this
case, we are expecting ‘Records’, each of which contains a record of a file that was added
(or changed) on s3.

• context (object) – This is an object containing potentially useful context provided by
Lambda. See the documentation cited above for details.

Returns ret – A dict containing ‘statusCode’, with a valid HTTP status code, and any other data to
be returned to Lambda.

Return type dict

The AWS Lambda emmaa-model-stats definition.

This file contains the function that will be run when Lambda is triggered. It must be placed on s3, which can either be
done manually (not recommended) or by running:

$ python update_lambda.py model_stats.py emmaa-model-stats

3.10. AWS model update and testing pipeline (emmaa.aws_lambda_functions) 69

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#dict

EMMAA Documentation, Release 1.16.0

in this directory.

emmaa.aws_lambda_functions.model_stats.lambda_handler(event, context)
Create a batch job to generate model statistics.

This function is designed to be placed on lambda, taking the event and context arguments that are passed. Event
parameter is used here to pass name of the model.

This Lambda function is configured to be invoked by emmaa-after-update Lambda function.

Parameters

• event (dict) – A dictionary containing metadata regarding the triggering event. In this
case the dictionary contains ‘model’ key.

• context (object) – This is an object containing potentially useful context provided by
Lambda. See the documentation cited above for details.

Returns ret – A dict containing ‘statusCode’, with a valid HTTP status code, and any other data to
be returned to Lambda.

Return type dict

The AWS Lambda emmaa-queries definition.

This file contains the function that will be run when Lambda is triggered. It must be placed on s3, which can either be
done manually (not recommended) or by running:

$ python update_lambda.py model_queries.py emmaa-queries

in this directory.

emmaa.aws_lambda_functions.model_queries.lambda_handler(event, context)
Create a batch job to run queries for model.

This function is designed to be placed on lambda, taking the event and context arguments that are passed. Event
parameter is used here to pass name of the model.

This Lambda function is configured to be invoked by emmaa-after-update Lambda function.

Parameters

• event (dict) – A dictionary containing metadata regarding the triggering event. In this
case the dictionary contains ‘model’ key.

• context (object) – This is an object containing potentially useful context provided by
Lambda. See the documentation cited above for details.

Returns ret – A dict containing ‘statusCode’, with a valid HTTP status code, and any other data to
be returned to Lambda.

Return type dict

The AWS Lambda emmaa-test-update-pipeline definition.

This file contains the function that starts model update cycle. It must be placed on AWS Lambda, which can either be
done manually (not recommended) or by running:

$ python update_lambda.py test_update_pipeline.py emmaa-test-update-pipeline

in this directory.

emmaa.aws_lambda_functions.test_update_pipeline.lambda_handler(event, context)
Invoke individual model update functions.

70 Chapter 3. EMMAA modules reference

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#dict

EMMAA Documentation, Release 1.16.0

This function iterates through all models contained on S3 bucket and calls a different Lambda function to turn
the model into tests if the model is configured to do so. It is expected that models have ‘make_tests’ parameter
in their config.json files.

This function is designed to be placed on AWS Lambda, taking the event and context arguments that are passed.
Note that this function must always have the same parameters, even if any or all of them are unused, because we
do not have control over what Lambda sends as parameters. Parameters are unused in this function.

Lambda is configured to automatically run this script every day.

See the top of the page for the Lambda update procedure.

Parameters

• event (dict) – A dictionary containing metadata regarding the triggering event.

• context (object) – This is an object containing potentially useful context provided by
Lambda. See the documentation cited above for details.

Returns ret – A response returned by the latest call to emmaa-test-update function.

Return type dict

The AWS Lambda emmaa-test-update definition.

This file contains the function that updates tests created from model. It must be placed on AWS Lambda, which can
either be done manually (not recommended) or by running:

$ python update_lambda.py test_update.py emmaa-test-update

in this directory.

emmaa.aws_lambda_functions.test_update.lambda_handler(event, context)
Create a batch job to update tests on s3.

This function is designed to be placed on AWS Lambda, taking the event and context arguments that are passed.
Note that this function must always have the same parameters, even if any or all of them are unused, because
we do not have control over what Lambda sends as parameters. Event parameter is used to pass model_name
argument.

See the top of the page for the Lambda update procedure.

Parameters

• event (dict) – A dictionary containing metadata regarding the triggering event. In this
case the dictionary contains model name.

• context (object) – This is an object containing potentially useful context provided by
Lambda. See the documentation cited above for details.

Returns ret – A dict containing ‘statusCode’, with a valid HTTP status code, ‘result’, and ‘job_id’
to be returned to Lambda.

Return type dict

emmaa.aws_lambda_functions.update_lambda.upload_function(script_name, func-
tion_name)

Upload the lambda function by pushing a zip file to Lambda.

This function pre-supposes you are running from the same directory that contains the lambda script.

Parameters

• script_name (str) – Name of a script containing lambda function.

• function_name (object) – Name of a lambda function as specified on AWS Lambda.

3.10. AWS model update and testing pipeline (emmaa.aws_lambda_functions) 71

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object

EMMAA Documentation, Release 1.16.0

3.11 xDD client

This modules provides an interface to query xDD content for figures and tables.

emmaa.xdd.xdd_client.get_document_figures(paper_id, paper_id_type)
Get figures and tables from a given paper.

Parameters

• paper_id (str or int) – ID of a paper.

• paper_id_type (str) – A name of a paper ID type (PMID, PMCID, DOI, TRID).

Returns figures – A list of tuples where each tuple is a figure title and bytes content.

Return type list[tuple]

emmaa.xdd.xdd_client.get_document_objects(doi)
Get a list of figure/table object dictionaries for a given DOI.

emmaa.xdd.xdd_client.get_figures_from_objects(objects, paper_links=False)
Get a list of paper links, figure titles and their content bytes from a list of object dictionaries (returned from
query or document api).

emmaa.xdd.xdd_client.get_figures_from_query(query, limit=None)
Get figures and tables from a query.

Parameters

• query (str) – An entity name or comma-separated entity names to query for.

• limit (int or None) – A number of figures and tables to return.

Returns figures – A list of tuples where each tuple is a link to the paper, a figure title and bytes
content.

Return type list[tuple]

emmaa.xdd.xdd_client.send_document_search_request(doi, page)
Send a request to get one page of results for a DOI.

emmaa.xdd.xdd_client.send_query_search_request(query, page)
Send a request to get one page of results for a query.

emmaa.xdd.xdd_client.send_request(url, params)
Send a request and handle potential errors.

3.12 EMMAA’s Subscription Service (emmaa.subscription)

3.12.1 Notifications functions (emmaa.subscription.notifications)

class emmaa.subscription.notifications.EmailHtmlBody(template_path)
Bases: object

Parent class for email body.

class emmaa.subscription.notifications.ModelDeltaEmailHtmlBody(template_path=’email_unsub/model_email_body.html’)
Bases: emmaa.subscription.notifications.EmailHtmlBody

Email body for model updates.

72 Chapter 3. EMMAA modules reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#object

EMMAA Documentation, Release 1.16.0

render(msg_dicts, unsub_link)
Provided pregenerated msg_dicts render HTML to put in email body.

Parameters

• msg_dicts (list[dict]) – A list of dictionaries containing parts of messages to
be added to email. Each dictionary has the following keys: ‘url’, ‘start’, ‘delta_part’,
‘middle’, ‘message’.

• unsub_link (str) – A link to unsubscribe page.

Returns An html string rendered from the associated jinja2 template

Return type html

class emmaa.subscription.notifications.QueryEmailHtmlBody(domain=’emmaa.indra.bio’,
tem-
plate_path=’email_unsub/email_body.html’)

Bases: emmaa.subscription.notifications.EmailHtmlBody

Email body for query notifications.

render(static_query_deltas, open_query_deltas, dynamic_query_deltas, unsub_link)
Provided the delta json objects, render HTML to put in email body.

Parameters

• static_query_deltas (json) – A list of lists that names which queries have up-
dates. Expected structure: [(english_query, detailed_query_link, model, model_type)]

• dynamic_query_deltas (list[) – A list of lists that names which queries have
updates. Expected structure: [(english_query, model, model_type)]

• unsub_link (str) – A link to unsubscribe page.

Returns An html string rendered from the associated jinja2 template

Return type html

emmaa.subscription.notifications.get_all_update_messages(deltas, is_tweet=False)
Get all messages for model deltas that can be further used in tweets and email notifications.

Parameters

• deltas (dict) – A dictionary containing deltas for a model and its test results returned
by get_model_deltas function.

• is_tweet (bool) – Whether messages are generated for Twitter (used to determine the
formatting of model types).

Returns msg_dicts – A list of individual message dictionaries that can be used for tweets or email
notifications.

Return type list[dict]

emmaa.subscription.notifications.get_model_deltas(model_name, test_corpora, date,
bucket=’emmaa’)

Get deltas from model and test stats for further use in tweets and email notifications.

Parameters

• model_name (str) – A name of the model to get the updates for.

• test_corpora (list[str]) – A list of test corpora names to get the test updates for.

• date (str) – A date for which the updates should be generated.

3.12. EMMAA’s Subscription Service (emmaa.subscription) 73

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

EMMAA Documentation, Release 1.16.0

• bucket (str) – A name of S3 bucket where the stats files are stored.

Returns deltas – A dictionary containing the deltas for the given model and test corpora.

Return type dict

emmaa.subscription.notifications.get_user_query_delta(db, user_email, do-
main=’emmaa.indra.bio’)

Produce a report for all query results per user in a given format

Parameters

• db (emmaa.db.EmmaaDatabaseManager) – An instance of a database manager to
use.

• user_email (str) – The email of the user for which to get the report for

• domain (str) – The domain name for the unsubscibe link in the html report. Default:
“emmaa.indra.bio”.

Returns A tuple with (str report, html report)

Return type tuple(str, html_str)

emmaa.subscription.notifications.make_html_report_per_user(static_results_delta,
open_results_delta,
dy-
namic_results_delta,
email, do-
main=’emmaa.indra.bio’)

Produce a report for all query results per user in an html file.

Parameters

• static_results_delta (list) – A list of tuples of query deltas for static queries.
Each tuple has a format (english_query, link, model, mc_type)

• open_results_delta (list) – A list of tuples of query deltas for open queries. Each
tuple has a format (english_query, link, model, mc_type)

• dynamic_results_delta (list) – A list of tuples of query deltas for dynamic
queries. Each tuple has a format (english_query, link, model, mc_type)

• email (str) – The email of the user to get the results for.

• domain (str) – The domain name for the unsubscibe link in the report. Default: “em-
maa.indra.bio”.

Returns A string containing an html document

Return type str

emmaa.subscription.notifications.make_model_html_email(msg_dicts, email, do-
main=’emmaa.indra.bio’)

Render html file for model notification email.

emmaa.subscription.notifications.make_reports_from_results(new_results, do-
main=’emmaa.indra.bio’)

Make a report given latest results and queries the results are for.

Parameters new_results (list[tuple]) – Latest results as a list of tuples where each tuple
has the format (model_name, query, mc_type, result_json, date, delta).

Returns reports – A list of reports on changes for each of the queries.

Return type list

74 Chapter 3. EMMAA modules reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#list

EMMAA Documentation, Release 1.16.0

emmaa.subscription.notifications.make_str_report_per_user(static_results_delta,
open_results_delta,
dynamic_results_delta)

Produce a report for all query results per user as a string.

Parameters

• static_results_delta (list) – A list of tuples of query deltas for static queries.
Each tuple has a format (english_query, link, model, mc_type)

• open_results_delta (list) – A list of tuples of query deltas for open queries. Each
tuple has a format (english_query, link, model, mc_type)

• dynamic_results_delta (list) – A list of tuples of query deltas for dynamic
queries. Each tuple has a format (english_query, link, model, mc_type) (no link in dy-
namic_results_delta tuples).

Returns msg – A message about query deltas.

Return type str

emmaa.subscription.notifications.model_update_notify(model_name, test_corpora,
date, db, bucket=’emmaa’)

This function finds delta for a given model and sends updates via Twitter posts and email notifications.

Parameters

• model_name (str) – A name of EMMAA model.

• test_corpora (list[str]) – A list of test corpora names to get test stats.

• date (str) – A date for which to get stats for.

• db (emmaa.db.EmmaaDatabaseManager) – An instance of a database manager to
use.

• bucket (str) – A name of S3 bucket where corresponding stats files are stored.

emmaa.subscription.notifications.tweet_deltas(deltas, twitter_cred)
Tweet the model updates.

Parameters

• deltas (dict) – A dictionary containing deltas for a model and its test results returned
by get_model_deltas function.

• twitter_cred (dict) – A dictionary containing consumer_token, consumer_secret, ac-
cess_token, and access_secret for a model Twitter account.

3.12.2 Email Service (emmaa.subscription.email_service)

emmaa.subscription.email_service.close_to_quota_max(used_quota=0.95, region=’us-
east-1’)

Check if the send quota is close to be exceeded

If the total quota for the 24h cycle is Q, the currently used quota is q and ‘used_quota’ is r, return True if q/Q >
r, otherwise return False.

Parameters

• used_quota (float) – A float between 0 and 1.0. This number specifies the fraction of
send quota currently used. Default: 0.95

• region (str) – A valid AWS region. The region to check the quota in. Default: us-east-1.

3.12. EMMAA’s Subscription Service (emmaa.subscription) 75

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str

EMMAA Documentation, Release 1.16.0

Returns True if the quota is close to be exceeded with respect to the provided ratio ‘used’.

Return type bool

emmaa.subscription.email_service.get_send_statistics(region=’us-east-1’)
Return the sending statistics, like bounce and complaint rates

See https://boto3.amazonaws.com/v1/documentation/api/latest/ reference/services/ses.html#SES.Client.get_send_statistics
for more info

Parameters region (Optional[str]) – Specify AWS region

Returns

Response syntax:

{

‘SendDataPoints’: [

{ ‘Timestamp’: datetime(2015, 1, 1), ‘DeliveryAttempts’: 123, ‘Bounces’: 123,
‘Complaints’: 123, ‘Rejects’: 123

},

]

}

Return type dict

emmaa.subscription.email_service.send_email(sender, recipients, subject, body_text,
body_html, source_arn=None, re-
turn_email=None, return_arn=None,
region=’us-east-1’)

Wrapper function for the send_email method of the boto3 SES client

IMPORTANT: sending is limited to 14 emails per second.

See more at: https://boto3.amazonaws.com/v1/documentation/api/latest/reference + /ser-
vices/ses.html#SES.Client.send_email https://docs.aws.amazon.com/ses/latest/APIReference/API_SendEmail.
html and python example at https://docs.aws.amazon.com/ses/latest/DeveloperGuide/ + sending-authorization-
delegate-sender-tasks-email.html

Parameters

• sender (str) – A valid email address to use in the Source field

• recipients (iterable[str] or str) – A valid email address or a list of valid
email addresses. This will fill out the Recipients field.

• subject (str) – The email subject

• body_text (str) – The text body of the email

• body_html (str) – The html body of the email. Must be a valid html body (starting
with <html>, ending with </html>).

• source_arn (str) – The source ARN of the sender. Should be of the format
“arn:aws:ses:us-east-1:123456789012:identity/user@example.com” or “arn:aws:ses:us-
east-1:123456789012:identity/example.com”. Used only for sending authorization. It
is the ARN of the identity that is associated with the sending authorization policy that
permits the sender to send using the email address specified as the sender. Exam-
ple: the owner of the domain “example.com” can send an email from any address
using @example.com, as long as the associated source_arn is “arn:aws:ses:us-east-
1:123456789012:identity/example.com”

76 Chapter 3. EMMAA modules reference

https://docs.python.org/3/library/functions.html#bool
https://boto3.amazonaws.com/v1/documentation/api/latest/
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://boto3.amazonaws.com/v1/documentation/api/latest/reference
https://docs.aws.amazon.com/ses/latest/APIReference/API_SendEmail.html
https://docs.aws.amazon.com/ses/latest/APIReference/API_SendEmail.html
https://docs.aws.amazon.com/ses/latest/DeveloperGuide/
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

EMMAA Documentation, Release 1.16.0

• return_email (str) – The email to which complaints and bounces are sent. Can be
the same as the sender.

• return_arn (str) – The return path ARN for the sender. This is the ARN associated
with the return email. Can be the same as the source_arn if return email is the same as
the sender.

• region (str) – AWS region to use for the SES client. Default: us-east-1

Returns

The API response object in the form of a dict is returned. The structure is:

>>> response = { 'MessageId': 'EXAMPLE78603177f-
→˓7a5433e7-8edb-42ae-af10' + '-
→˓f0181f34d6ee-000000', 'ResponseMetadata': {
→˓ '...': '...', }, }

Return type dict

3.12.3 Email Utilities (emmaa.subscription.email_util)

emmaa.subscription.email_util.generate_signature(email, expire_str, digestmod=<built-
in function openssl_sha256>)

Return an HMAC signature based on email and expire_str

From documentation of HMAC in python: key is a bytes or bytearray object giving the secret key. If msg is
present, the method call update(msg) is made. digestmod is the digest name, digest constructor or module for
the HMAC object to use. It supports any name suitable to hashlib.new().

Parameters

• email (str) – A valid email address. Should not be URL encoded.

• expire_str (str) – A timestamp string in seconds

• digestmod (str|digest constructor|module) – digest name, digest con-
structor or module for the HMAC object to use. Default: hashlib.sha256

Returns A hexadecimal string representing the signature

Return type str

emmaa.subscription.email_util.generate_unsubscribe_link(email, days=7, do-
main=’emmaa.indra.bio’)

Generate an unsubscribe link for the provided email address

Given an email address, generate an unsubscribe link using that email address. Optionally provide the number
of days into the future the link should be valid until and the domain name. The domain name is expeceted to
be of the format “some.domain.com”. The appropriate path and prefixes will be added together with the query
string. Example:

>>> generate_unsubscribe_link('user@email.com', domain='some.domain.com')
>>> 'https://some.domain.com/query/unsubscribe?email=user%40email.com' +

'&expiration=1234567890&signature=1234567890abcdef'

Parameters

• email (str) – An email address.

• days (int) – The number of days into the future the link should be valid until. Default:
7.

3.12. EMMAA’s Subscription Service (emmaa.subscription) 77

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

EMMAA Documentation, Release 1.16.0

• domain (str) – A domain name to prefix the query string with. Expected format is:
“some.domain.com”. Default: ‘emmaa.indra.bio’

Returns An unsubscribe link for the provided email and (optionally) domain

Return type str

emmaa.subscription.email_util.generate_unsubscribe_qs(email, days=7)
Generate an unsubscribe query string for a url

Parameters

• email (str) – A valid email address

• days (int) – The number of days the query string should be valid. Default: 7.

Returns A query string of the format ‘email=<urlenc email>&expiration=<timestamp>&signature=<sha256
hex>’

Return type str

emmaa.subscription.email_util.get_email_subscriptions(email)
Verifies which email subsciptions exist for the provided email

Parameters email (str) – The email to the check subscriptions for

Returns

Return type list(tuple(str, str, query_hash))

emmaa.subscription.email_util.register_email_unsubscribe(email, queries, models)
Executes an email unsubscribe request

emmaa.subscription.email_util.verify_email_signature(signature, email, expiration,
digestmod=<built-in function
openssl_sha256>)

Verify HMAC signature

3.13 Utilities (emmaa.util)

exception emmaa.util.NotAClassName
Bases: Exception

emmaa.util.does_exist(bucket, prefix, extension=None)
Check if the file with exact key or starting with prefix and/or with extension exist in a bucket.

emmaa.util.find_latest_emails(email_type, time_delta=None, w_dt=False)
Return a list of keys of the latest emails delivered to s3

Parameters

• email_type (str) – The email type to look for, e.g. ‘feedback’ if listing bounce and
complaint emails sent to the ReturnPath address.

• time_delta (datetime.timedelta) – The timedelta to look backwards for list-
ing emails.

• w_dt (bool) – If True, return a list of (key, datetime.datetime) tuples.

Returns A list of keys to the emails of the specified type. If w_dt is True, each item is a tuple of
(key, datetime.datetime) of the LastModified date.

Return type list[Keys]

78 Chapter 3. EMMAA modules reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list

EMMAA Documentation, Release 1.16.0

emmaa.util.find_latest_s3_file(bucket, prefix, extension=None)
Return the key of the file with latest date string on an S3 path

emmaa.util.find_latest_s3_files(number_of_files, bucket, prefix, extension=None)
Return the keys of the specified number of files with latest date strings on an S3 path sorted by date starting with
the earliest one.

emmaa.util.find_nth_latest_s3_file(n, bucket, prefix, extension=None)
Return the key of the file with nth (0-indexed) latest date string on an S3 path

emmaa.util.get_s3_client(unsigned=True)
Return a boto3 S3 client with optional unsigned config.

Parameters unsigned (Optional[bool]) – If True, the client will be using unsigned mode
in which public resources can be accessed without credentials. Default: True

Returns A client object to AWS S3.

Return type botocore.client.S3

emmaa.util.make_date_str(date=None)
Return a date string in a standardized format.

Parameters date (Optional[datetime.datetime]) – A date object to get the standard-
ized string for. If not provided, utcnow() is used to construct the date. (Note: using UTC is
important because this code may run in multiple contexts).

Returns The datetime string in a standardized format.

Return type str

emmaa.util.sort_s3_files_by_date_str(bucket, prefix, extension=None)
Return the list of keys of the files on an S3 path sorted by date starting with the most recent one.

emmaa.util.sort_s3_files_by_last_mod(bucket, prefix, time_delta=None, extension=None, un-
signed=True, reverse=False, w_dt=False)

Return a list of s3 object keys sorted by their LastModified date on S3

Parameters

• bucket (str) – s3 bucket to look for keys in

• prefix (str) – The prefix to use for the s3 keys

• time_delta (Optional[datetime.timedelta]) – If used, should specify how
far back the to look for files on s3. Default: None

• extension (Optional[str]) – If used, limit keys to those with the matching file
extension. Default: None.

• unsigned (bool) – If True, use unsigned s3 client. Default: True.

• reverse (bool) – Reverse the sort order of the returned s3 files. Default: False.

• w_dt (bool) – If True, return list with datetime object along with key as tuple (key,
datetime.datetime). Default: False.

Returns A list of s3 keys. If w_dt is True, each item is a tuple of (key, datetime.datetime) of the
LastModified date.

Return type list

emmaa.util.strip_out_date(keystring, date_format=’datetime’)
Strips out datestring of selected date_format from a keystring

3.13. Utilities (emmaa.util) 79

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list

EMMAA Documentation, Release 1.16.0

3.14 Functions for node and edge filtering (emmaa.
filter_functions)

emmaa.filter_functions.filter_chem_mesh_go(agent)
Filter ungrounded agents and agents grounded to MESH, CHEBI, GO unless also grounded to HMDB.

emmaa.filter_functions.filter_to_internal_edges(g, u, v, *args)
Return True if an edge is internal. NOTE it returns True if any of the statements associated with an edge is
internal.

emmaa.filter_functions.register_filter(filter_type)
Decorator to register node or edge filter functions.

A node filter function should take an agent as an argument and return True if the agent is allowed to be in a path
and False otherwise.

An edge filter function should take three (graph, source, target - for DiGraph) or three (graph, source, target,
key - for MultiDiGraph) parameters and return True if the edge should be in the graph and False otherwise.

80 Chapter 3. EMMAA modules reference

CHAPTER 4

Configuring an EMMAA model

Each EmmaaModel has to be initiated with a config.json file. Config files can be generated manually or automatically
with relevant methods in Priors (emmaa.priors) module (e.g. see Literature Prior (emmaa.priors.literature_prior) to
start a model with default config from literature). This document describes the structure of the config.

4.1 First level fields of config.json

• name [str] A short name of a model.

– Example: aml

• search_terms [list] A list of jsonified SearchTerms (see emmaa.priors) to search the literature for.

– Example:

[{"type": "gene",
"name": "PRKCA",
"db_refs": {"HGNC": "9393", "UP": "P17252"},
"search_term": "'PRKCA'"},

{"type": "drug",
"name": "SB 239063",
"db_refs": {"HMS-LINCS": "10036",

"PUBCHEM": "5166",
"LINCS": "LSM-44951",
"CHEBI": "CHEBI:91347"},

"search_term": "'SB 239063'"}]

• human_readable_name [str] A human readable name of the model that will be displayed on the dashboard.

– Example: Acute Myeloid Leukemia

• ndex [dict, optional] Configuration for NDEx network formatted as {“network”: <NDEx network ID>}

– Example:

81

EMMAA Documentation, Release 1.16.0

{"network": "ef58f76d-f6a2-11e8-aaa6-0ac135e8bacf"}

• description: str Description of a model (will be displayed on EMMAA dashboard).

– Example: A model of molecular mechanisms governing AML, focusing on frequently mutated
genes, and the pathways in which they are involved.

• dev_only [bool, optional] Set to True if this model is still in development mode and should not be displayed on
the main emmaa.indra.bio dashboard. Default: False.

• twitter [str, optional] If the model has Twitter account, this field should provide a key to retrieve Twitter secret
keys stored on AWS SSM.

– Example: covid19

• twitter_link [str, optional] URL to model’s Twitter account if it exists.

– Example: https://twitter.com/covid19_emmaa

• run_daily_update [bool] Whether the model should be updated with new literature daily.

• export_formats [list[str], optional] A list of formats the model can be exported to. Accepted values include:
indranet, pybel, sbml, kappa, kappa_im, kappa_cm, gromet, bngl, sbgn, pysb_flat, kappa_ui. Note that
kappa_ui option does not generate a separate export file but adds a link to Kappa interactive UI that uses
model’s kappa export (generated if kappa is in this list).

• assembly [dict or list[dict]] Configuration of model assembly represented as a dictionary where each key is a
type of assembly (main for general purpose assembly steps and dynamic for additional steps to assemble
a simulatable model) and values should contain corresponding jsonified steps to pass into the INDRA
AssemblyPipeline class. Each step should have a function key and, if appropriate, args and kwargs keys.
For more information on AssemblyPipeline, see https://indra.readthedocs.io/en/latest/modules/pipeline.
html For backward compatibility, if a model has only one type of assembly (main), assembly configuration
can be a list of steps instead of a dictionary with assembly types.

– Example:

{"main": [
{"function": "map_grounding",
"kwargs": {"grounding_map": {

"Viral replication": {"MESH": "D014779"},
"viral replication cycle": {"MESH": "D014779"}}}},

{"function": "run_preassembly",
"kwargs": {"return_toplevel": false}},
{"function": "filter_by_curation",
"args": [{"function": "get_curations"},

"any",
["correct", "act_vs_amt", "hypothesis"]],

"kwargs": {"update_belief": true}}
],

"dynamic": [
{"function": "filter_by_type",
"args": [{"stmt_type": "Complex"}],
"kwargs": {"invert": true}},
{"function": "filter_direct"},
{"function": "filter_belief", "args": [0.95]}
]

}

• reading [dict, optional] Configuration of model update process. For more details see Model update configura-
tion

82 Chapter 4. Configuring an EMMAA model

https://twitter.com/covid19_emmaa
https://indra.readthedocs.io/en/latest/modules/pipeline.html
https://indra.readthedocs.io/en/latest/modules/pipeline.html

EMMAA Documentation, Release 1.16.0

• test [dict] Configuration of model testing. For more details see Model testing configuration

• query [dict, optional] Configuration of model queries. For more details see Model queries configuration

• make_tests [bool or dict, optional] It is possible to create tests from model assembled statements to test other
models against them. If set to True, then tests will be created from all assembled statements. For details
on filtering the statements to a specific subset, see Making tests from model configuration

4.2 Model update configuration

Model update configuration is the value mapped to the key reading in the model config. It defines the model update
process. It can include the following fields:

• reader [list[str], optional] A list of readers to process the literature. Accepted elements are: indra_db_pmid,
indra_db_doi, elsevier_eidos, aws. See Readers (emmaa.readers) for more information about readers.
Default: [“indra_db_pmid”]

• literature_source [list[str], optional] A list of sources to search the literature. Accepted elements are: pubmed,
biorxiv, elsevier. Default: [“pubmed”]. Note that literature sources should be provided in the same order
as the readers to read them.

• cord19_update [dict, optional] COVID-19 specific configuration to update model from the CORD19 corpus.
The dictionary should have the following fields:

– metadata [dict] Metadata to pass to new EmmaaStatements.

– date_limit: int Number of days to search back.

– Example:

{"cord19_update": {
"metadata": {

"internal": true,
"curated": false
},

"date_limit": 5
}

}

• disease_map [dict, optional] A configuration to update a model from MINERVA Disease Map. It should have
the following fields:

– map_name [str] A name of a disease_map.

– filenames [list[str] or str] A list of SIF filenames from the disease map to process or all to process
all filenames.

– metadata [dict] Metadata to pass to new EmmaaStatements.

– Example:

{"disease_map": {
"map_name": "covid19map",
"filenames" : "all",
"metadata": {

"internal": true
}

}
}

4.2. Model update configuration 83

EMMAA Documentation, Release 1.16.0

• other_files: list[dict] A list of configurations to load statements from existing pickle files on S3. Each dictio-
nary in the list should have the following fields:

– bucket [str] A name of S3 bucket.

– filename [str] A name of a pickle file.

– metadata [str] Metadata to pass to new EmmaaStatements loaded from this file.

– Example:

{"other_files": [
{

"bucket": "indra-covid19",
"filename": "ctd_stmts.pkl",
"metadata": {"internal": true, "curated": true}

}
]
}

• filter [dict, optional] Configuration of a statement filter used for statistics generation (e.g. to not include external
statements into statistics). The filter dictionary should have the following fields:

– conditions [dict] Conditions represented as key-value pairs that statements’ metadata can be com-
pared to.

– evid_policy: str Policy for checking statement’s evidence objects. If “all”, then the function returns
True only if all of statement’s evidence objects meet the conditions. If “any”, the function
returns True as long as at least one of statement’s evidences meets the conditions.

– Example:

{"filter": {
"conditions": {"internal": true},
"evid_policy": "any"
}

}

4.3 Model testing configuration

Model testing configuration is the value mapped to the key test in the model config. It defines the model testing
process. It can include the following fields:

• test_corpus [list[str]] A list of test corpora names that the model will be tested against daily.

– Example : [“covid19_curated_tests”, “covid19_mitre_tests”]

• default_test_corpus [str] The name of the test corpus that will be loaded by default on the model page on the
EMMAA dashboard.

– Example : “large_corpus_tests”

• mc_types [list[str]] A list of network types a model should be assembled into. For each of the model types,
a ModelChecker instance will be created and used to find explanations to tests. Accepted elements are:
pysb, pybel, signed_graph, unsigned_graph, dynamic.

• statement_checking [dict, optional] Maximum paths and maximum path length to limit test results. In the
most general case the dictionary should have only two keys (max_path_length and max_paths) but it is
also possible to set a custom configuration for one model type. In this case, a nested dictionary can be

84 Chapter 4. Configuring an EMMAA model

EMMAA Documentation, Release 1.16.0

added with model type as a key and a simple dictionary with the same two keys as a value. Default:
{“max_path_length”: 5, “max_paths”: 1}.

– Example (adding a custom config to a model type):

{"statement_checking": {
"max_paths": 1,
"max_path_length": 4,
"pybel": {

"max_paths": 1,
"max_path_length": 10
}

}
}

• filters [dict] Configuration for applying semantic filters to the model checking process. It is represented as a dic-
tionary mapping a test corpus name to a filter function name. The filter function should be defined in Func-
tions for node and edge filtering (emmaa.filter_functions) and registered with @register_filter(‘node’)
decorator.

– Example:

{"filters": {
"covid19_mitre_tests" : "filter_chem_mesh_go"
}

}

• edge_filters [dict] Configuration to apply edge filters to the model checking process. It is represented as a dictio-
nary mapping a test corpus name to an edge filter function name. Filter function should be defined in Func-
tions for node and edge filtering (emmaa.filter_functions) and registered with @register_filter(‘edge’)
decorator.

– Example:

{"edge_filters": {
"covid19_tests" : "filter_to_internal_edges"
}

}

4.4 Model queries configuration

Configuration for model queries represented as a dictionary keyed by the type of query: statement_checking (source-
target paths), open_search (up/down-stream paths), dynamic (temporal properties), and intervention (source-target
dynamics). Configuration for statement_checking and open_search queries is similar to the model test state-
ment_checking format. Same as in test config, it is possible to set different values for different model types.

Configuration for dynamic and intervention queries has different fields (all optional):

• use_kappa [bool] Determines the mode of the simulation. If True, uses kappa, otherwise, runs the ODE simu-
lations. Default: False.

• time_limit [int] Number of seconds to run the simulation for. Default: 200000.

• num_times [int] Number of time points in the simulation plot. Default: 100.

• num_sim [int] Number of simulations to run. This should be only provided if hypothesis_tester is not set.
Default: 2.

4.4. Model queries configuration 85

EMMAA Documentation, Release 1.16.0

• hypothesis_tester [dict; currently only for dynamic, not intervention.] Configuration to test a hypothesis using
random samples with adaptive size. If this is given, num_sim should not be provided. The hypothe-
sis_tester dictionary should include the following keys: alpha (Type-I error limit, between 0 and 1), beta
(Type-II error limit, between 0 and 1), delta (indifference parameter for interval around prob in both
directions), prob (probability threshold for the hypothesis, between 0 and 1).

Having dynamic and intervention key in query config is required for a model to be listed as an option for model
selection on temporal properties and source-target dynamics queries pages (for path-based queries all models will be
listed).

• Example (all query types):

{"statement_checking": {
"max_paths": 5,
"max_path_length": 4,
"pybel": {

"max_paths": 10,
"max_path_length": 10
}

},
"open_search": {

"max_paths": 50,
"max_path_length": 2
},

"dynamic": {
"use_kappa": true,
"time_limit": 100,
"num_times": 100,
"hypothesis_tester": {"alpha": 0.1,

"beta": 0.1,
"delta": 0.05,
"prob": 0.8}

},
"intervention": {

"use_kappa": true,
"time_limit": 1000,
"num_times": 100,
"num_sim": 1
},

}

4.5 Making tests from model configuration

Configuration to filter the statements before creating the tests (e.g. to make tests from literature derived statements
and skip curated). It is the value mapped to the key make_tests in the model config (if you do not need to filter the
statements and want to make tests from all assembled statements, it is enough to set make_tests to True). To filter
statements, the make_tests should be set to dictionary with the key filter and the value should be another dictionary
with the following fields:

• conditions [dict] Conditions represented as key-value pairs that statements’ metadata can be compared to.

• evid_policy: str Policy for checking statement’s evidence objects. If “all”, then the function returns True only
if all of statement’s evidence objects meet the conditions. If “any”, the function returns True as long as at
least one of statement’s evidences meets the conditions.

86 Chapter 4. Configuring an EMMAA model

EMMAA Documentation, Release 1.16.0

{"make_tests":
{"filter": {

"conditions": {"curated": false},
"evid_policy": "any"
}

}
}

4.5. Making tests from model configuration 87

EMMAA Documentation, Release 1.16.0

88 Chapter 4. Configuring an EMMAA model

CHAPTER 5

ASKE Reports

This section contains reports on the EMMAA project as part of the DARPA Automating Scientific Knowledge Extrac-
tion (ASKE) program.

5.1 ASKE Month 5 Milestone Report: Lessons Learned

Here we summarize some of the high-level lessons we learned about large-scale machine-assisted model assembly
and analysis over the course of developing EMMAA. Overall, we strongly believe that through an attempt to automate
scientific modeling, we can gain substantial insight into the way human experts work with models of complex systems.

5.1.1 Automated model assembly: the challenge of defining scope and context

The initial development of EMMAA focused on deploying an automated model assembly pipeline to generate models
specific to the various cancer types catalogued in the cancer genome atlas (TCGA). Collectively these models would
constitute an “Ecosystem” of self-updating, context-specific models that could be used to answer mechanistic queries
relevant to specific diseases. Context specificity was necessary because the answer to queries (e.g. “What is the effect
of EGFR inhibition on cell growth?”) differ depending on the specific gene expression pattern and mutation profile of
a particular cancer type.

Our initial approach to enforce the context-specificity of automatically assembled models is described here and is
centered on the genetics of specific cancer types. Frequently mutated genes in specific cancers were used as search
terms to query Pubmed for publications which were then processed with machine reading tools and assembled into
models along with information from curated databases.

Subsequent model testing highlighted a key shortcoming of this approach: tests of well-known biochemical pathways
would fail in nearly all models because the limitations imposed on model scope (in the interest of context specificity)
resulted in many key genes being omitted.

In an effort to expand models to incorporate key “backbone” genes while still retaining context specifity we then
implemented two alternative approaches.

1. Run heat diffusion over our biological knowledge network to identify genes that were highly connected to the
cancer-specific genes;

89

EMMAA Documentation, Release 1.16.0

2. Query Reactome, a high quality database of biological pathways, for pathways containing the disease genes,
and incorporate all genes from these pathways into the model.

We found that the latter approach involving Reactome was more effective at eliminating mechanistic gaps than heat
diffusion, which tended to highlight irrelevant genes based peculiarities of the knowledge network structure. However,
even with the automated Reactome-based approach we found that models had a very low ratio of passing tests, and
glaring mechanistic gaps: for example, the melanoma model passed only 4% of tests from the BEL Large Corpus, and
omitted MAP2K1, a protein immediately downstream of (the frequently mutated gene) BRAF and a validated target
in melanoma.

We therefore explored an alternative approach, in which models would be made specific to biochemical pathways
rather than cancer types, a la the original Ras Machine. We found that the first iteration of this model had a much
higher pass ratio of 34%, suggesting that models built and limited in scope in this way were more likely to have the
internal integrity required for answering mechanistic queries.

Despite this improvement, the central problem of capturing model context remains: even if an automatically assembled
model contains the genes relevant to a specific disease does not imply that it can answer a mechanistic query in a
context specific way. For example, the Ras pathway is involved in many cancer types, not least in lung cancer and
melanoma, yet the effects of intervening in the pathways differ between the two diseases. A key remaining challenge
is to develop a system that can pull in the relevant data (e.g., gene expression, mutations) to contextualize structurally
identical models, and make use of this data during analysis to reach context-specific conclusions.

5.1.2 Automated model analysis: benefits of automated model validation

With respect to model analysis, the first key lesson learned is how valuable the process of automated testing is for
developing model assembly systems such as INDRA and EMMAA. By coupling large-scale automated reading and
assembly with automated testing and analysis, the strengths and weaknesses of the reading/assembly machinery itself
are clearly exposed. Over the course of monitoring daily updates to the disease models and browsing test results, we
were able to identify bugs and other opportunities for improvement in a highly efficient and targeted way. The image
below illustrates the effect of some of these improvements as they affected the number of applied and passed tests:

90 Chapter 5. ASKE Reports

http://emmaa.indra.bio/dashboard/skcm

EMMAA Documentation, Release 1.16.0

5.1.3 Test-driven modeling

A key observation that we have made during the development of EMMAA is of the value of automated model testing
not only as a means of post-hoc model validation, but also to support test-driven modeling. That is, the construction
(in part manual) of scientific models based on a corpus of qualitative experimental constraints. This is by analogy
with test-driven development in software engineering in which the tests are written first, and program features are only
added to satisfy the tests.

During this reporting period, we have explored test-driven modeling by manually building a model of a core subset of
the Ras signaling pathway. The model is built using natural language via INDRA and TRIPS as described here; the
automated assembly of the natural language sentences yields a model with semantic annotations enabling subsequent
testing and analysis. The model is exposed in the EMMAA dashboard as the “Ras Model”. The initial model consisted
of a set of roughly 60 natural language sentences and was roughly doubled in size through an iterative process of
expansion and refinement that was driven by model testing.

We have found that the test-driven modeling approach has a number of advantages for the construction of scientific
models. First, the approach to scientific modeling in many fields is to use a formal model to encode a specific hypoth-
esis about a particular phenomenon. These “fit-to-purpose” models are useful tools for answering specific scientific
questions but they are rarely reusable and are biased toward a particular explanation. With test-driven modeling, the
growth of the model is empirically driven by the observations that match the scope of the model, independent of any
specific problem. In extending the Ras model to satisfy tests from the BEL Large Corpus, we repeatedly found it nec-

5.1. ASKE Month 5 Milestone Report: Lessons Learned 91

https://en.wikipedia.org/wiki/Test-driven_development
https://www.cancer.gov/research/key-initiatives/ras/ras-central/blog/2015/ras-pathway-v2
http://msb.embopress.org/content/13/11/954.long
http://emmaa.indra.bio/dashboard/rasmodel

EMMAA Documentation, Release 1.16.0

essary to add in underappreciated or noncanonical mechanisms. For example, it is well known that EGFR activation
leads to the phosphorylation and activation of SRC; but it is also the case that SRC phosphorylates and potentiates
the activation of EGFR. Similarly, AKT1 both phosphorylates and is phosphorylated by MTOR. In typical practice, a
modeler would not incorporate all of these influences unless it was their specific intention to investigate crosstalk, feed-
back, or other aspects of the overall mechanism that deviate from a simple linear pathway. The process of test-driven
modeling brought to the forefront how common these processes are.

Second, just as in software development, test-driven modeling helps the modeler avoid decorating a model with details
that are not essential to improving overall performance. This helps to avoid modeling quagmires in which a modeler
attempts to encode everything known about a process in maximum detail. The existence of a set of tests, and the
iterative development process that EMMAA enables (serving here as a tool for continuous integration of models),
dramatically improves the efficiency of building high quality, reusable models.

Third, test-driven modeling helps build insight into how a model works, as well as highlighting serendipitous and
potentially unexpected implications of particular mechanisms. During the test-driven development of the Ras Model,
there were several instances where adding a small extension to the model to address an issue that appeared to be local
to the two proteins resulted in several additional tests passing, that involved long-range causal influences. For example,
fixing a reaction involving MTOR and PPP2CA resulted in three tests passing, each highlighting the negative feedback
from MTOR back to upstream IGF1R signaling via IRS-1.

92 Chapter 5. ASKE Reports

EMMAA Documentation, Release 1.16.0

The screenshot of the EMMAA dashboard test results page for the curated Ras Model, shown below, highlights the
iterative process of test-driven model refinement and expansion.

The bottom plot shows the total number of applied tests over time, along with the number of passing tests; the top
plot tracks changes in the percentage of passing tests. The initial process of model refinement is shown by (1), in
which the initial model was subject to testing and then progressively refined over time. During this process the pass
ratio grew from roughly 20% to 67%. At this point, the model was expanded to include the well studied signaling

5.1. ASKE Month 5 Milestone Report: Lessons Learned 93

EMMAA Documentation, Release 1.16.0

proteins EGF and EGFR. This nearly doubled the number of applied tests (2, bottom plot), but since relatively few of
these new tests passed, the pass ratio dropped to ~35%. Importantly, these new tests were applied automatically by
EMMAA as a consequence of the expansion in model scope. Inspection of the model highlighted the fact that EGFR
was disconnected from many of its downstream effectors; addition of only a single statement (connecting EGFR to
SOS1, which was already in the model for its role downstream of IGF1R) led to a large number of the new tests
passing, boosting the pass ratio back to over 50% (3, both plots).

5.1.4 Exploiting the bidirectional relationship between models and tests

During the development of EMMAA we have come to appreciate the benefits of treating the information flow between
models and tests as symmetric and bidirectional.

For example, manually curated tests can be used to validate automatically assembled models, or the other way around:
curated models validating automatically extracted observations. In our initial work, we focused on the application
of curated experimental observations (from the BEL large corpus) to automatically assembled mechanistic models.
We described above how applying these tests to the Ras Machine model helped us to identify issues in our automatic
model assembly pipeline that had been latent for years. We now also see the value in automatically collecting tests
and using high-quality curated models to evaluate the plausibility of the test observations themselves. For example,
in the development of the Ras Model, we found that a surprising proportion (over 15%) of the tests in the BEL Large
Corpus were incorrectly curated. These test errors were inadvertently highlighted when the model failed to pass them.
We imagine that observations derived from a noisy source (such as machine reading) could be subjected to checking
by one or more high-quality models, with the model establishing the likelihood that a finding resulted from a machine
reading error. It is also possible to imagine that in fields where models are mature, new scientific findings could be
automatically subjected to model-driven evaluation, highlighting the ways in which they either support or contradict
established models.

5.2 ASKE Month 6 Milestone Report

5.2.1 Making model analysis and model content fully auditable

When browsing the results of model tests, it is often of interest to inspect the specific provenance of each modeled
mechanisms that contributed to the result. EMMAA models are built automatically from primary knowledge sources
(databases and literature), and model components are annotated such that given the result, we can link back to the
original sources.

Links to browse evidence are available in all of the following contexts:

• New statements added to the model

• Most supported statements in the model

• New tests applicable to the model

• Passed/failed tests and the mechanisms constituting paths by which tests passed

94 Chapter 5. ASKE Reports

EMMAA Documentation, Release 1.16.0

5.2.2 Including new information based on relevance

EMMAA models self-update by searching relevant litearture each day and adding mechanisms described in new
publications. However, event publications that are relevant often contain pieces of information that aren’t directly
relevant for the model. We therefore created a relevance filter which can take one of several policies and determine
if a new statement is relevant to the given model or not. The strictest policy is called prior_all which only considers
statements in which all participants are prior search terms of interest for the model as relevant. A less strict policy,
prior_one requires that at least one participant of a statement is a prior search term for the model. Currently, EMMAA
models are running with the prior_one policy.

5.2.3 Coarse-grained model checking of EMMAA models with directed graphs

To determine whether a model can satisfy a particular test, EMMAA currently assembles sets of INDRA Statements
into mechanistic PySB/Kappa models. The INDRA ModelChecker is then used to determine whether there is a causal
path in the Kappa influence map linking the subject and object of the test with the appropriate causal constraints. These
constraints include the polarity of the path, the detailed attributes of the subject and object (for example, a particular
modified form of the object protein), and the type of regulation (e.g., regulation of activity vs. regulation of amount).
Because the assembled PySB/Kappa models make maximum use of available mechanistic information, this approach
to model checking yields results with high precision, in that the existence of a path indicates that the strict semantics
of the test are satisfied.

5.2. ASKE Month 6 Milestone Report 95

EMMAA Documentation, Release 1.16.0

The high precision of this approach comes at the expense of recall and robustness, in that tests may not pass due to
subtle aspects of the test or model statements. For example, if a machine reading system incorrectly extracts a positive
regulation statement linking genes A and B as a regulation of amount rather than a regulation of activity, this can lead
to the test “A activates B” failing and yielding no paths.

To help scientists using EMMAA to generate scientific insight, it would be ideal for models to be verified against
tests with different degrees of causal constraints. If a model fails to satisfy a test using the high-precision approach,
the scientist user could also inspect causal paths produced by model assembly and checking procedures with a more
generous interpretation of causality.

A key advantage of using INDRA as the model assembly engine within EMMAA is that a single knowledge repre-
sentation (INDRA Statements) can be used to assemble multiple types of causal models. In the context of EMMAA,
INDRA can be used to assemble at least four different types of models, listed in increasing order of causal precision:

• Directed networks

• Signed directed networks

• Boolean networks

• Biological Expression Language (BEL) networks

• PySB model/Kappa influence maps

During this reporting period, we investigated the use of the most coarse-grained of these representations, directed net-
works, to check EMMAA models against tests. Code and results are available in an iPython notebook accompanying
this report available on Github here. Using the most recent model and test results from the EMMAA Ras Machine 2.0,
we built a simple directed graph among agents using networkx and checked for paths between pairs of genes in the
applied tests.

We found that, as expected, many more tests passed in the directed graph model (509 tests, 58.7%) than the detailed
PySB/Kappa model (165 tests, 19.0%). All tests passed by the PySB/Kappa model also passed in the directed graph
model, indicating that the latter is a strict subset of the former. Roughly half (52%) of the tests that failed in the
PySB/Kappa model yielded paths in the directed graph. Inspection of the discrepancies highlighted some character-
istics of these types of tests (see iPython notebook.) A key point is that the proportion of tests passed by the directed
graph model represent an upper bound of the mechanistic coverage of the model that is independent of the particular
modeling formalism involved. While many of the paths found in the directed graph do not satisfy the strictest interpre-
tation of the tests, they are nevertheless useful for a human scientist to better understand relevant processes contained
in the model and to generate hypotheses.

In the upcoming reporting period we aim to extend this approach further by using EMMAA to assemble multiple types
of models at different levels of causal resolution. A scientist will then be able to explore a range of explanations for a
given observation depending on the precision-recall tradeoffs of their use case.

96 Chapter 5. ASKE Reports

https://github.com/indralab/emmaa/blob/report/notebooks/Graph-based%20model%20checking%20for%20EMMAA.ipynb
http://emmaa.indra.bio/dashboard/rasmachine
https://github.com/indralab/emmaa/blob/report/notebooks/Graph-based%20model%20checking%20for%20EMMAA.ipynb

EMMAA Documentation, Release 1.16.0

5.3 ASKE Month 7 Milestone Report

5.3.1 Repositioning EMMAA within the ASKE framework of modeling layers

Based on discussions at the ASKE 6-month PI meeting we have been reformulating how our approach in EMMAA
relates to the three proposed modeling representation levels. One outcome of the meeting was an emerging consensus
that the middle “model” level represents domain-independent model representations that are not yet executable. Ex-
amples discussed included linear regression models, polynomial functions, ordinary differential equations, etc. Prior
to this discussion we had considered this layer, representing classes of mathematical models, to be the “bottom”; how-
ever, we now recognize that a model at this level is not yet executable because it must first be coupled to a particular
simulation or inference procedure.

With this in mind, we feel that our approach requires the definition of an additional layer, sitting between the topmost
(level 1, “formulations/constraints”) and the mathematical modeling layer (now level 3). This layer corresponds to
networks of EMMAA/INDRA Statements: representations of a particular subset of domain knowledge. A knowledge
network at this layer may be formulated based on requirements/constraints specified in level 1 (e.g., “a knowledge
model of breast cancer”, or “all signaling pathways with a bowtie architecture”). In turn, this knowledge network
can be used to generate different analytical/mathematical models at level 3 (boolean networks, rule-based models,
analytical/mathematical model ODEs, etc.).

One focus of the discussion during the PI meeting was on the potential for integration of ASKE modeling frameworks
via the domain-independent level 3. Integration at this level would allow tools for model analysis, simulation, ex-
pansion, etc. to be reused between teams. At this layer domain-specific considerations may still apply but they will
have been converted into syntactic constraints expressed in the language of the particular modeling formalism. One
example relevant to biology is the formulation of ODE models: while in a domain-independent sense the class of all
ordinary differential equation models is quite large, biological models typically make use of a highly restricted sub-
set of mathematical functions. In a “mass-action” reaction model, for example, the right hand side function consists
strictly of a linear combination of products of the concentration variables. This (semantic) biochemical constraint

5.3. ASKE Month 7 Milestone Report 97

EMMAA Documentation, Release 1.16.0

could be expressed in the (syntactic) language of mathematical functions to allow the application of tools for model
expansion, simulation, etc.

Since the PI meeting we have also concluded that important model inference and transformation procedures can
occur at layers other than level 3, and that these operations can occur within, not just across layers. For example, in
INDRA there are a set of related procedures that we collectively refer to as “knowledge assembly” or “pre-assembly”:
identifying subsumption relationships, inferring and applying belief scores, identifying statement relationships, etc.
Both the information considered in these operations, and the operations themselves explicitly make use of domain-
specific knowledge, and all take INDRA Statements as input and produce INDRA Statements as output. These steps
are referred to as “pre-assembly” to differentiate them from the step of assembly, which denotes the transformation of
knowledge-level information (level 2) from model-level information (level 3).

5.3.2 Use cases for the EMMAA system (and ASKE systems in general)

Push Science

In 2015, Paul Cohen defined “push scholarship” as: “[. . .] instead of pulling results into our heads, we push results into
machine-maintained big mechanisms, where they can be examined by anyone. This could change science profoundly.”

ASKE systems have the potential to go beyond this ambitious goal by:

• actively searching for new discoveries and data,

• autonomously updating a set of models by integrating new discoveries,

• designing model analysis experiments to understand the effect of this new knowledge

• reporting the effect of new discoveries on scientific questions relevant to the user

In other words, novel, relevant implications of discoveries, as soon as they appear, are “pushed” to scientists.

Monitoring reproducibility

About 3,600 new publications appear each day on PubMed, in biomedicine alone. Using automated model extension
and analysis, ASKE systems can evaluate newly reported mechanisms against experimental observations (data) and
vice versa. Reported mechanisms that aren’t supported by prior observations, as well as observations that don’t
make sense with respect to existing models can be detected. This technology can help address some aspects of the
reproducibility crisis in a principled way.

Automated scientific discovery

There is a large body of unexplained observations (i.e., open scientific questions for which no underlying mechanistic
explanation is known) appearing in the biomedical literature and in data stores An ASKE system that immediately
aggregates and models new knowledge and evaluates its implications with respect to unexplained observations, is
likely to be the first to notice that a previously unexplained observation can now be explained. Novel candidate
explanations to observations constructed automatically using ASKE systems can be experimentally confirmed and
published.

98 Chapter 5. ASKE Reports

EMMAA Documentation, Release 1.16.0

5.4 ASKE Month 9 Milestone Report

5.4.1 Generalizing EMMAA: a proof-of-principle model of food insecurity

Until recently, all models in EMMAA represented molecular mechanisms for a given disease or pathway. However,
the EMMAA approach can be applied to models in other domains. Conceptually, the EMMAA framework is a good
fit for domains where there is a constant flow of novel causal information between interacting “agents” or “concepts”
appearing in a structured or unstructured form. To demonstrate the generalizability of EMMAA, we created a model
of causal factors influencing food insecurity.

In principle, setting up a new EMMAA model only requires creating a new configuration file that specifies a name, a
description, as well as a list of search terms, and any optional arguments used to configure the model building process.
In applying EMMAA to a new domain, we extended the set of options that can be specified in the configuration file,
including the following:

• The literature catalogue to use to search for new content. Biology models use PubMed (specific to biomedicine),
whereas other domain models can now use ScienceDirect (general purpose) to search for new articles.

• The reading system to use to read new text content. The biology models in EMMAA query the INDRA Database
each day to search for machine reading extractions for new publications. The Database contains outputs for
two biology-specific reading systems (REACH and Sparser) for new daily literature content. Models in other
domains can be configured to use the Eidos reading system (via its INDRA interface) to extract a general set of
causal relationships between concepts of interest.

• The assembly steps to perform during model extension. We added more granularity to configuration options for
the model assembly process, making it possible to apply biology-specific INDRA assembly steps (e.g., protein
sequence mapping) only to models where they are relevant.

• The test corpus to use for validating the model. So far, each biology model used the same BEL Large Corpus
as a source of test statements to validate against. We made it possible to configure what test corpus to use for a
given model, allowing a custom set of relevant tests to be applied to the food insecurity moddel.

To set up the initial, proof-of-principle model of food insecurity, we first identified a set of core concepts of interest:
food security, conflict, flooding, food production, human migration, drought, and markets. We then filtered a set of
extractions by Eidos on a corpus of 500 documents to causal influences among these concepts. We also set these core
concepts as search terms in the model’s configuration file. Finally, we defined a set of common sense statements as test
conditions, for instance, “droughts cause a decrease in food availability” to check the model against. The model is now
included on the EMMAA dashboard where it can be examined (http://emmaa.indra.bio/dashboard/food_insecurity).

While this initial food insecurity model serves as a proof of principle for the generality of the EMMAA concept and
the underlying technologies, there are several challenging aspects of building a good model for this domain.

1. The identification of relevant sources of information. So far, the food insecurity model uses ScienceDirect to
search for scientific publications. However, it is likely that a significant amount of timely new information is
available in reports (by governments, NGOs, etc.) and news stories. In the longer term, this would require
implementing ways to query and collect text content from such sources.

2. Querying for relevant text content. We found that certain search terms (e.g., food insecurity) result in mostly
relevant publications, while others, wuch as “conflict” or “markets” are too broad and ambiguous, and result in
many irrelevant publications being picked up. This suggests that one has to constrain the domain, in addition to
the specific concepts used as search terms when finding novel literature content.

3. Machine reading infrastructure. The biology EMMAA models rely on a parallelized AWS infrastructure in
which multiple instances of machine reading systems can process hundreds or thousands of new publications
each day. In contrast, the food insecurity model currently relies on a single reader instance running as a service,
and therefore has much lower throughput. Before a comparable infrastructure of readers is implemented for this
domain, we had to limit the number of new publications that are processed each day to update the model.

5.4. ASKE Month 9 Milestone Report 99

http://emmaa.indra.bio/dashboard/food_insecurity

EMMAA Documentation, Release 1.16.0

4. Reading with corroboration. While biology models in EMMAA rely on knowledge assembled from multiple
machine reading systems as well as structured (often human curated) knowledge bases, the food insecurity
model currently relies on a single reading system, Eidos. This means that any systematic errors specific to the
reading system are prone to propagate into the assembled model. In the longer term, integrating more reading
systems or knowledge sources could improve on this.

5. Indirect relations. As shown by the initial test set for the food insecurity model, all test statements are satisfied
by a single causal influence statement, even ones where one might reasonably expect the test to be satisfied via
a chain of causal influences, e.g., “droughts cause a decrease in food availability”. We believe that this is due
to the fact that authors routinely report indirect causal influences, and the reading/assembly systems currently
aren’t set up to effectively differentiate between direct and indirect effects.

5.4.2 Extending model testing and analysis to multiple resolutions

In our Month 6 Milestone Report, we described an initial experiment to investigate the value of coarse-grained model
testing using simple directed graphs. In this reporting period we have extended this concept further by developing a
generalized framework for model checking using networks assembled at different levels of granularity and specificity.
In particular, we are expanding the range of models assembled from a set of EMMAA Statements to include:

• Directed networks

• Signed directed networks

• PyBEL networks (includes nodes with state information)

• PySB models/Kappa influence maps

For each of these model representations, model checking can be formulated as a process consisting of three steps:

1. Given a (source, target) statement for checking, identify the nodes associated with the source and target. Note
that a source or target agent in the test statement may correspond to multiple nodes in the give network repre-
sentation.

2. Identify causal paths linking one or more source nodes to one or more target nodes. If such a path exists, the
test statement is satisfied.

3. Collect paths from the network representation and map them back to the knowledge-level (EMMAA statements)
for reporting.

The second step in this process, pathfinding over the causal network, is common to all four of the network represen-
tations listed above. However, the first and third steps–identifying mappings between knowledge-level statements and
the nodes and edges in the network–are specific to each network representation.

To support multi-resolution model checking we have restructured the INDRA model checker to support multiple
model types, with the common code refactored out into a parent class. In addition we have created an assembler
that assembles INDRA Statements into a new network representation with a metadata model that can capture the
full provenance information from the source INDRA Statements. This network representation, a multi-digraph called
the IndraNet, will be used to generate multiple coarse-grained “views” (digraph, signed digraph), while preserving
statement metadata.

In the upcoming reporting period we will complete this refactoring procedure and extend the EMMAA web application
to generate and display test results for alternative realizations of each individual knowledge model.

5.4.3 Implementing an object model for model analysis queries

We have previously specified a Model Analysis Query Language (MAQL) used to represent various analysis tasks
that can be performed on EMMAA models, in either a user or machine-initiated way (see Model Analysis Query
Language).

100 Chapter 5. ASKE Reports

EMMAA Documentation, Release 1.16.0

In this reporting period, we implemented a Python object model corresponding to MAQL. The object model provides
a structure for all the attributes needed to represent a query, and methods to serialize and deserialize it into JSON. This
allows linking the web front-end, the query execution engine, and the back-end query storage database in a principled
way through a single standardized format. In particular, we have implemented the PathProperty query class (emmaa.
queries.PathProperty), and plan to extend to the other three query types specified in MAQL in the coming
months.

5.4.4 Detecting changes in analysis results due to model updates

One of the fundamental ideas of the EMMAA framework is to be able to detect meaningful changes to analyses of
interest as model updates happen. We have implemented an initial solution to this in the QueryManager (emmaa.
answer_queries.QueryManager) whereby the previous results of each registered query are compared to the
new result. Any detected changes are reported in the model update logs (currently not exposed in the user-facing web
front-end yet). A limitation of the current approach is that the result of a registered query is a single “top” mechanistic
path that satisfies the query conditions, rather than all possible paths. This means that in some cases, when a new path
is created by a new piece of knowledge, it would not be detected as a change in the query results, unless the “top” path
happens to change. We are planning to improve the change detection method in this direction.

Further, we are working on adding a user registration functionality. Once user accounts and user-specific registered
queries are created, the next step will be to create a notification system that exposes the detected changes in analysis
results with respect to a query of interest to the user.

5.5 ASKE Month 11 Milestone Report

5.5.1 Deployment of multiple-resolution model testing and analysis

We have previously described our progress towards developing a capability to check EMMAA models using causal
representations at different levels of resolution. During this reporting period we have deployed multiple-resolution
model checking for all models hosted in the EMMAA web application. After processing new literature and assembling
the corpus of relevant EMMAA statements, the system assembles the knowledge-level information into the following
types of causal representations:

• Unsigned directed networks. This model type is a simple directed graph with unsigned, directed edges between
entities (molecular entities and biological processes in the case of biological networks).

• Signed directed networks. Similar to the unsigned, directed network, in that it is a directed graph over entities
and processes, but each edge is associated with a sign indicating whether it represents a positive or negative
regulation of activity or amount.

• PyBEL networks. A PyBEL network is a particular network representation of causal information encoded in
the Biological Expression Language (see https://pybel.readthedocs.io). PyBEL networks are also signed and
directed, but the nodes in the network have state: for a given protein X, the mutated, modified, or active forms
of X are represented by distinct nodes. The inclusion of state information allows the network to represent more
specific preconditions for causal influences.

• PySB models/Kappa influence maps. In this representation, the EMMAA Statements are used to instantiate a
rule-based model using PySB/Kappa, and the Kappa framework is used to analyze the causal structure of the
rules in the model. In a Kappa influence map, the nodes are reaction rules rather than entities, and each edge
reflects the positive or negative influence one reaction rule has on another (for example, if rule A produces P
as its product, and P is a precondition for the firing of rule B, the influence map will contain a positive edge
between rules A and B). Each rule in the PySB/Kappa model is subject to specific preconditions for activity
and hence this representation is the most causally constrained. Until this reporting period, PySB/Kappa models
were the only form of model representation subject to automatic testing EMMAA.

5.5. ASKE Month 11 Milestone Report 101

https://pybel.readthedocs.io

EMMAA Documentation, Release 1.16.0

Each of these four causal network representations represent entities and causal influences differently; the first step in
automated checking of causal queries is therefore to ground the entities in the query to nodes in the particular net-
work representation. For example, in the causal query “How does phosphorylated BRAF increase MAPK1 activity”,
the subject node is “phosphorylated BRAF” and the object node is “MAPK1 activity” (Figure 1). In the unsigned and
signed directed networks, these two concepts map simply to the nodes for BRAF and MAPK1, because these networks
do not distinguish based on entity state. In the PyBEL network, there are multiple nodes consistent with “phospho-
rylated BRAF”, including p(BRAF, pmod(P, S, 602)) (representing BRAF phosphorylated at serine 602) and p(BRAF,
pmod(P)) representing BRAF phosphorylated at an unknown site; similarly, there are multiple nodes corresponding to
“MAPK1 activity”, including act(MAPK1) and kin(MAPK1), representing the generic molecular and specific kinase
activity of MAPK1, respectively. For the PySB/Kappa influence map, there are multiple rules consistent with phos-
phorylated BRAF as source nodes, and multiple observables corresponding to MAPK1 being in a state consistent with
its activity. Checking the model involves identifying these subject and object nodes and then searching for paths link-
ing any subject node to any object node. If any such path is found, then this represents a candidate causal explanation
in that representation.

Figure 1: Network nodes associated with the subject and object of the causal query “How does phosphorylated BRAF
increase MAPK1 activity?” using the four causal representations deployed in this reporting period.

In addition to generating the model testing results on the back end, the EMMAA web application now presents the
results of multi-resolution model checking to the user. The Tests tab of the model landing page now highlights the
proportion of passed tests for each model type (Figure 2). As expected, the least stringent causal representation
(unsigned graph) generally yields the highest proportion of passing tests, while the most stringent (PySB) yields the
lowest.

102 Chapter 5. ASKE Reports

EMMAA Documentation, Release 1.16.0

Figure 2: Test report graph highlighting the percentage of applied tests passed in each of the four causal representa-
tions.

In addition, the test report page now displays tests results as a matrix rather than a simple list (Figure 3). Each icon is
hyperlinked to a test details page showing information about the test and the causal paths found to explain the causal
query.

5.5. ASKE Month 11 Milestone Report 103

EMMAA Documentation, Release 1.16.0

Figure 3: Test result matrix with the green and red icons indicating whether the given test passed or failed in the
specific model representation, respectively.

5.5.2 User-specific query registration and subscription

We implemented a user registration and login feature in the EMMAA dashboard which allows registering and sub-
scribing to user-specific queries. After registering an account and logging in, users can now subscribe to a query of
their interest on the EMMAA Dashboard’s Queries page (https://emmaa.indra.bio/query). Queries submitted by users
are stored in EMMAA’s database, and are executed daily with the latest version of the corresponding models. The
results of the new analysis are then displayed for the user who subscribed to the query on the query page. This allows
users to come back to the EMMAA website daily, and observe how updates to models result in new analysis results.
Later, we are planning to report any relevant change to the analysis results directly to the user by sending a notification
via email or Slack.

This capability is one important step towards achieving “push science” in which users are notified about relevant new
discoveries if the inclusion of these discoveries result in meaningful changes in the context of prior knowledge (i.e., a
model) with respect to a scientific question.

5.5.3 An improved food insecurity model

This month we migrated the food insecurity model to use the new World Modelers ontology (https://github.com/
WorldModelers/Ontologies), and expanded its set of search terms. This significantly increased the models’ size and
the granularity of concepts over which it represents causal influences:

104 Chapter 5. ASKE Reports

https://emmaa.indra.bio/query
https://github.com/WorldModelers/Ontologies
https://github.com/WorldModelers/Ontologies

EMMAA Documentation, Release 1.16.0

Figure 4: Size of the food insecurity model over time.

Below is a snapshot of the network view of the model on NDEx (https://ndexbio.org/#/network/
478a3ed6-b3b7-11e9-8bb4-0ac135e8bacf):

Figure 5: Snapshot of the food insecurity model as of 9/27/2019.

5.5. ASKE Month 11 Milestone Report 105

https://ndexbio.org/#/network/478a3ed6-b3b7-11e9-8bb4-0ac135e8bacf
https://ndexbio.org/#/network/478a3ed6-b3b7-11e9-8bb4-0ac135e8bacf

EMMAA Documentation, Release 1.16.0

5.6 ASKE Month 13 Milestone Report

5.6.1 Related work for the EMMAA system

We are not aware of any meta-modeling systems coupling machine-assembled models to automated analysis, in molec-
ular biology or other fields. To the best of our knowledge, the EMMAA system is the first of its kind. Despite the
fact that EMMAA is unique as an integrated system, there does exist a body of pre-existing work related to individual
component technologies of the system.

Mathematical and causal modeling has been widely applied in systems biology, where a multitude of model types
(ordinary and partial differential equations, Boolean and logical models, probabilistic graphical models, etc.) have
been used to represent the behavior of biochemical mechanisms (Aldridge et al., 2006). However, such models are
difficult and time consuming to build, and require special mathematical and computational expertise. To address this,
EMMAA draws on novel tools allowing the automated assembly of mathematical models directly from text (INDRA;
Gyori et al., 2017).

There also exists a large body of work in text mining in biomedicine (Ananiadou et al., 2006), motivated by the fact that
around 3,200 new publications appear every day - too much for any human expert to keep up with. However, the output
of these systems have thus far not been combined (EMMAA currently integrates and aligns output from 4 different text
mining systems: REACH (Valenzuela-Escárcega et al., 2019), Sparser (McDonald et al., 2016), TRIPS/DRUM (Allen
et. al., 2015) and RLIMS-P (Torii et al., 2015)) and made available for natural language querying by users. Recently, a
graphical user interface was proposed to explore causal relations extracted by a single reading system (Barbosa et al.,
2019). However, the causal networks built using this system do not make use of the knowledge assembly procedures
built into EMMAA, including correction of systematic reading errors, and assessment of redundance, relevance, and
believability.

Further, several large human-curated knowledge-bases for molecular mechanisms have been developed (Cerami et al,
2010, Croft et al., 2013), and can be queried through their respective websites through standard web forms. Finally,
large repositories of experimental and clinical data are routinely used in biomedicine (Keenan et al., 2018, Tomczak et
al., 2015). However, while such repositories exist, they grow only through manual curation and are often out of date.

Finally, while the concept of model testing and validation, either static or dynamic, is not new, this has (to our knowl-
edge) only been applied to specific models in isolated modeling studies. There exists no framework for the systematic
evaluation of domain models with respect to relevant tests; nor are there any previous demonstrations of the use of text
mining to automatically grow a body of observations for use in model evaluation.

5.6.2 System performance statistics

EMMAA currenty manages a total of 11 models. Eight of these models are fully machine-maintained and represent
various diseases (7 models) and pathways (1 model). Two models are based on expert-curated natural language, then
linked to literature evidence and tested automatically. Finally, one model represents a set of causal factors affecting
food insecurity, i.e., is outside the domain of molecular biology.

To quantify the performance of the system in terms of extending and testing/ analyzing models, we plotted the distri-
bution of (1) number of new statements added (2) number of new tests applied and (3) change in the test pass ratio for
each of the machine-maintained biology models each day.

Histogram of the number of new statements added to each model each day. As we can see, the change in the number
of statements is often zero (i.e., no new mechanisms were found relevant to the given model), but otherwise is between
1-15 new statements per day. In some cases, the assembly procedure removes previously existing mechanisms from
the model, thereby making the number of statements added negative.

106 Chapter 5. ASKE Reports

EMMAA Documentation, Release 1.16.0

Histogram of the number of new applied tests each day. Typically, if new statements are added to a model, the number
of applied tests can increase. As shown in the histogram, new mechanisms added to a model often result in dozens of
new test being applicable to the model.

5.6. ASKE Month 13 Milestone Report 107

EMMAA Documentation, Release 1.16.0

Histogram of the change in the fraction of tests that pass (across all four modeling formalisms, PySB, PyBEL, signed
graph, unsigned graph) each day compared to the previous day. While small fractional changes are more common, in
some cases, model extensions (or changes to model assembly) resulted in large jumps in test pass ratio of 5-25%.

108 Chapter 5. ASKE Reports

EMMAA Documentation, Release 1.16.0

References

Aldridge, B. B., Burke, J. M., Lauffenburger, D. A., & Sorger, P. K. (2006). Physicochemical modelling of cell
signalling pathways. Nature cell biology, 8(11), 1195.

Gyori, B. M., Bachman, J. A., Subramanian, K., Muhlich, J. L., Galescu, L., & Sorger, P. K. (2017). From word
models to executable models of signaling networks using automated assembly. Molecular systems biology, 13(11).

Ananiadou, S., & McNaught, J. (2005). Text mining for biology and biomedicine (pp. 1-12). London: Artech House.

Valenzuela-Escárcega, M. A., Babur, Ö., Hahn-Powell, G., Bell, D., Hicks, T., Noriega-Atala, E., . . . & Morrison, C.
T. (2018). Large-scale automated machine reading discovers new cancer-driving mechanisms. Database, 2018.

McDonald, D., Friedman, S., Paullada, A., Bobrow, R., & Burstein, M. (2016, March). Extending biology models
with deep NLP over scientific articles. In Workshops at the Thirtieth AAAI Conference on Artificial Intelligence.

Allen, J., de Beaumont, W., Galescu, L., & Teng, C. M. (2015, July). Complex Event Extraction using DRUM. In
Proceedings of BioNLP 15 (pp. 1-11).

Torii, M., Arighi, C. N., Li, G., Wang, Q., Wu, C. H., & Vijay-Shanker, K. (2015). RLIMS-P 2.0: a generalizable
rule-based information extraction system for literature mining of protein phosphorylation information. IEEE/ACM
Transactions on Computational Biology and Bioinformatics (TCBB), 12(1), 17-29.

Barbosa, G. C., Wong, Z., Hahn-Powell, G., Bell, D., Sharp, R., Valenzuela-Escárcega, M. A., & Surdeanu, M. (2019,
June). Enabling Search and Collaborative Assembly of Causal Interactions Extracted from Multilingual and Multi-
domain Free Text. In Proceedings of the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics (Demonstrations) (pp. 12-17).

5.6. ASKE Month 13 Milestone Report 109

EMMAA Documentation, Release 1.16.0

Cerami, E. G., Gross, B. E., Demir, E., Rodchenkov, I., Babur, Ö., Anwar, N., . . . & Sander, C. (2010). Pathway
Commons, a web resource for biological pathway data. Nucleic acids research, 39, D685-D690.

Croft, D., Mundo, A. F., Haw, R., Milacic, M., Weiser, J., Wu, G., . . . & Jassal, B. (2013). The Reactome pathway
knowledgebase. Nucleic acids research, 42(D1), D472-D477.

Keenan, A. B., Jenkins, S. L., Jagodnik, K. M., Koplev, S., He, E., Torre, D., . . . & Kuleshov, M. V. (2018). The
library of integrated network-based cellular signatures NIH program: system-level cataloging of human cells response
to perturbations. Cell systems, 6(1), 13-24.

Tomczak, K., Czerwińska, P., & Wiznerowicz, M. (2015). The Cancer Genome Atlas (TCGA): an immeasurable
source of knowledge. Contemporary oncology, 19(1A), A68.

5.7 ASKE Month 15 Milestone Report

5.7.1 EMMAA Knowledge assemblies as alternative test corpora

During this reporting period we have made two significant updates to our approach to static analysis of models against
observations. First, we have implemented a prototype capability to generalize EMMMAA knowledge assemblies for
use as either models or as tests. Second, we have implemented the capability to test a single model against multiple
corpora, which involved changes to both the back-end test execution as well as the user interface for displaying test
results.

In EMMAA, daily machine reading is used to update a set of causal relations relevant to a specific domain, such
as a disease, signaling pathway, or phenomenon (e.g., food insecurity). Up until this point, these (possibly noisy)
knowledge assemblies have been used to build causal models that are checked against a set of manually-curated
observations. We have now also implemented the converse procedure, whereby the knowledge assemblies are treated
as sets of observations, used to check manually curated models.

A prerequisite for this approach is the ability to run a single model against alternative test suites, which required
significant refactoring of our back-end procedures for triggering testing and results generation, and new user interfaces
to display multiple test results. This feature is described in the documentation for the Tests Tab.

As a proof of concept, we converted the EMMAA Statements used to generate the Ras Machine 2.0 (rasmachine)
and Melanoma (skcm) models into sets of EMMAA Tests, and checked the manually-curated Ras Model (rasmodel)
against each set independently. The user can now choose between these alternative test corpora in the EMMAA user
interface:

Fig. 1: Selecting test results to view among “Large Corpus Tests”, “Rasmachine Tests” and “Skcm tests”.

110 Chapter 5. ASKE Reports

EMMAA Documentation, Release 1.16.0

Examining the performance of the curated Ras Model against these three different corpora reveals striking differences.
The PySB implementation of the Ras Model has a passing rate of 55% for the BEL Large Corpus (100/182 tests),
but only 16% (120/730 tests) for the Ras Machine test corpus and 7% (6/86 tests) for the Melanoma test corpus. We
inspected a handful of the tests from the Ras Machine that the Ras Model did not pass. Many of these failed tests
highlighted aspects of the Ras Model that were failing either for minor technical reasons (e.g., “CCND1 activates
CDK4”, which failed due to the active form of CDK4 being defined explicitly in the model); others represented
knowledge gaps that could guide additions to the model (e.g., “RPS6KA1 activates RPTOR”). This latter category
represent an opportunity for test-driven modeling as we described in an earlier report, with the additional feature that
here the system is automatically providing guidance for model extension based on ongoing mining of the literature.

In addition, we also found a number of cases where the failure of the Ras Model to pass a test highlighted errors
in the underlying machine reading underlying the test. For example, the Melanoma Model included the test “PTEN
ubiquitinates PTEN”, which was derived from jointly incorrect extractions from three distinct sentences. As the
Ras Model is extended to cover more of the true biology of the Ras pathway, we anticipate that failed tests will be
increasingly likely to be erroneous. From a larger perspective, we believe that this approach highlights the prospect of
using causal models to determine the a priori plausibility of a newly-reported finding extracted by text mining.

5.7.2 Time machine

When EMMAA performs daily updates, it reports which new statements were newly added to each model, the new
tests that were applied based on the these statements, and whether these new tests passed or failed. Until this point
the user could only see the change in statements and tests from the most recent update. This prevented the user from
investigating the changes at earlier points in time, for example at points where there were large changes in the number
of tests passing. During this reporting period we have added a “time machine” feature to the user interface to allow
the user to inspect changes in the model statements and tests at specific previous timepoints.

For example, the history of the Ras Machine model shows that on 11/26/2019, there was a dramatic change in the pass
ratio of PyBEL model tests, as shown below:

Fig. 2: Substantial change in the PyBEL pass ratio for the Ras Machine model on November 26, 2019.

Clicking on the timepoint after the change refreshes the interface to display which tests were newly passed at this
point:

Inspection of these newly passed tests along with the changes in model statements can help the user understand changes
in the causal structure of the model over time.

This feature is described in the documentation section Load Previous State of Model.

5.7. ASKE Month 15 Milestone Report 111

EMMAA Documentation, Release 1.16.0

5.7.3 Dynamical model simulation and testing

Initially, the EMMAA project focused on a single mode of model analysis: finding mechanistic paths between a source
(e.g., a perturbed protein) and a readout. This mode of analysis is static in that it relies on the causal connectivity
structure of the model to characterize its behavior.

We have generalized EMMAA model analysis to dynamical properties in which model simulation is performed. First,
EMMAA Statements are assembled into a PySB model - a rule-based representation from which a reaction network,
and subsequently, a set of coupled ordinary differential equations (ODEs) can be generated. Given suitable parameters
and initial conditions, this set of ODEs can be solved numerically to reconstruct the temporal profile of observables of
interest.

Our goal was to design a simple specification language that allows a user to choose an observable, and determine
whether it follows a given dynamical profile of interest. An example could be: “In the RAS model, is phosphorylated
ERK transient?”. Here “phosphorylated ERK” is the observable, and “transient” is the dynamical profile. The user
can choose from the following dynamical profiles:

• always value (low/high): the observable is always at a given level

• sometime value (low/high): at some point in time, the observable reaches the given level

• eventual value (low/high): the observable eventually reaches a given level and then stays there

• no change: the observable’s level never changes

• transient: the observable’s level first goes up and then goes back down

• sustained: the observable’s level goes up and then stays at a high level

Internally, EMMAA uses a bounded linear-time temporal logic (BLTL) model checking framework to evaluate these
properties. BLTL is defined over discrete time and so we choose a suitable sampling rate at which the observable’s
time course profile is reconstructed. A temporal logic formula is then constructed around atomic propositions to
represent the query. Each atomic proposition has the form [observable,level] and evaluates to True if the observable is
at the given level at the current time point. Atomic propositions are then embedded in formulae using standard BLTL
operators including X, F, G and U, combined with standard logical operators (~, ^, v). For instance, “is phosphorylated
ERK transient?” would be turned into the BLTL property [pERK,low]^F([pERK,high])^F(G([pERK,low])), which can
informally be interpreted as: “pERK is initially low, after which at some point it reaches a high level, after which is
goes to a low level and remains there.”

Given a model simulation, a generic BLTL model checker takes the simulation output (for the observable) and deter-
mines whether it satisfies the given formula. The result (pass/fail) is then displayed on the dashboard along with a plot
of the actual simulation.

In the future, we plan to account for the parameteric (and potentially the structural) uncertainty of each model using
sampling, and use statistical model checking techniques with given false positive and false negative guarantees to
produce a pass/fail result.

112 Chapter 5. ASKE Reports

EMMAA Documentation, Release 1.16.0

This feature is described in Temporal properties queries.

5.7.4 Towards push science: User notifications of newly-discovered query results

The system of user notifications is an important component of the EMMAA concept. As a first approach, we imple-
mented a registration system for users so that when a registered user logs in, they can register specific queries that they
are interested in monitoring over time.

Currently, the Query page allows users to browse the results of their registered queries given the current state of each
model for which the query is registered. Independently, EMMAA’s answer_queries module can detect if the result
of a registered query changes due to a model update. Putting these two capabilities together, we developed a user
notification system in EMMAA. If a specific model update changes the result of a registered user query, the user
receives an email notifying them about the change. Importantly, the change to model behavior is attributable to the
most recent model update (in which a new discovery from literature was assembled into the model). This creates a
system in which new research results, as soon as they are published, are integrated into models that are then evaluated
with respect to specific analyses, and their effect on model behavior is assessed and exposed to users whose research it
affects. The email notification system is currently being tested internally, and will be exposed on the public interface
in the next reporting period.

5.8 ASKE Month 18 Milestone Report

5.8.1 Expert curation of models on the EMMAA dashboard

Previously, statements constituting each EMMAA model were linked to an outside website (the INDRA DB) where
they could be curated by users as correct or incorrect. However, this feature was not convenient for at least two reasons:
the curation required moving to an external website, and the specific scope and state of each individual EMMAA model
was not always correctly reflected on the more generic INDRA DB site.

Therefore, we implemented several new features in EMMAA that allow curating model statements (and model tests)
directly on the dashboard. Some of the key places that allow curation include

• The list of most supported statements on the Model tab.

• The list of new added statements on the Model tab.

• The page where all statements in a model can be browsed.

• Each model’s Test tab allows curating tests themselves (which in some cases are also prone to errors) and also
the results of test, i.e., paths of mechanisms satisfying the test.

• Results of new queries and registered queries on the Queries page.

Existing curations for all of the above content are also accessible within the dashboard.

The figure below shows an example of the interface for entering new curations. as well as the visual annotations used
to show existing curations and their properties for each statement or evidence.

5.8.2 Viewing and ranking all statements in a model

We also recognized the importance of being able to inspect the contents of the model as a whole, in a view which ex-
poses all the literature evidence and also enables in-place curation (as opposed to the NDEx network view). Therefore,
we added a “View All Statements” button to each Model page which allows browsing all statements in the model. To
overcome the challenge of the model potentially containing a very large number of statements, the page uses an auto-
expand feature which loads statements in real time as the user scrolls further down on the page. Similarly, evidences
for each statement are loaded during runtime, and only when requested by the user.

5.8. ASKE Month 18 Milestone Report 113

EMMAA Documentation, Release 1.16.0

The default view on the All Statements page ranks statements by the number of evidence that support them. This
allows curators to focus on statements that are prominently discussed in the subset of literature corresponding to the
scope of the model. However, this ranking doesn’t necessarily correspond to a statement’s importance in terms of
functionally affecting a model’s behavior. Therefore, we added another option to sort statements by the number of
model tests whose result rely on the statement. In other words, if a given mechanism is essential for many tests
passing, it will be ranked high on this page. This view is particularly useful if a user intends to curate the model in
a way that they focus on identifying incorrect statements that have the biggest functional effect on model behavior,
without spending time on statements that do not play an important role in this sense.

5.8.3 Email notifications

The system of user notifications for registered queries is now in place and available to any registered user. On the
Query page, when a query is registered, the user is also signed up for email notifications. This means that each time
a relevant new result is available for the query, the user receives an email informing them what the new result is, and
linking them to the page on which the new result and its effect on model behavior can be inspected.

A representative use case for this is a query about a drug and an indirect downstream effect that could be explained
by many possible parallel paths of mechanisms (e.g., “how does quercetin inhibit TMPRSS2?”). Each day, as a
model is updated, new mechanisms that were extracted from the latest literature may provide links between previously
unconnected concepts that can contribute to new results for a query.

The figure below shows an example notification email that an EMMAA user would receive:

5.8.4 A model of Covid-19

Before starting the project, we had planned to set up at least one EMMAA model of a relevant public health-related
process. As the Covid-19 crisis emerged, we set up an EMMAA model (https://emmaa.indra.bio/dashboard/covid19/
?tab=model) to capture the relevant existing literature (by building on the CORD-19 corpus). The model also self-
updates each day with new literature on Covid-19, which is now appearing at a pace of ~500 papers a day, and
accelerating.

We have made a number of enhancements to the underlying reading and assembly pipelines to:

1. Incorporate full text content from the CORD-19 corpus alongside our other sources (PubMed Central, MED-
LINE, Elsevier, xDD)

114 Chapter 5. ASKE Reports

https://emmaa.indra.bio/dashboard/covid19/?tab=model
https://emmaa.indra.bio/dashboard/covid19/?tab=model

EMMAA Documentation, Release 1.16.0

2. Improve grounding of viral proteins, e.g., “SARS-CoV-2 Spike protein”

3. Use GILDA (https://github.com/indralab/gilda) to ground named entities identified by the University of Ari-
zona open-domain reading system Eidos to extract and integrate high-level causal relations (e.g., viruses cause
respiratory inf.

In addition, we have added curated tests describing empirically observed inhibitors of SARS-CoV-2 (e.g., “Imatinib
methanesulfonate inhibits severe acute respiratory syndrome coronavirus 2”) to determine whether the model can
identify mechanistic explanations for the effectiveness of these drugs.

5.8.5 Integration of content from UW xDD system

During this reporting period we have continued to develop our pipeline to integrate content from the University of
Wisconsin xDD platform. To support the pipeline we have created new command-line endpoints to run machine
reading and statement extraction within our Dockerized system. INDRA Statements extracted from the xDD content
are posted to a shared private AWS S3 bucket along with associated document metadata. In five successive pilot runs
we have refined metadata formats and adapted the schema of the INDRA DB to allow INDRA Statements to be linked
to article metadata in the absence of article content (we only obtain INDRA Statements from xDD, while xDD retains
the articles themselves). Next steps include:

1) Determining relevance of xDD documents to specific EMMAA models by linking documents to specific xDD-
indexed terms/keywords

2) Scaling up to larger document runs focusing on Pubmed-indexed documents for which we do not have full texts
available from other sources.

5.8.6 Configurable model assembly pipeline

Each EMMAA model is defined by a configuration file which determines what search terms the model is built around,
other metadata (name, description etc.), and other settings specific to the model. Building on the new Pipeline feature
in INDRA, EMMAA models can now define the assembly pipeline applied to each model in a fully declarative way, as
part of the configuration file. This simplifies the EMMAA codebase, and makes the instantiation of new models much
easier, in a way that is decoupled from code. This could open up exciting possibilities such as instantiating EMMAA
models on-demand, potentially through a UI.

5.8. ASKE Month 18 Milestone Report 115

https://github.com/indralab/gilda

EMMAA Documentation, Release 1.16.0

116 Chapter 5. ASKE Reports

CHAPTER 6

ASKE-E Reports

This section contains reports on the EMMAA project as part of the DARPA Automating Scientific Knowledge Extrac-
tion (ASKE) program extension.

6.1 ASKE-E Month 1 Milestone Report

6.1.1 Overall goals and use cases for the Bio Platform

The goal of the Bio Platform is to provide an automated modeling and model analysis platform (with appropriate
interfaces for user-in-the-loop interaction) around the molecular basis of diseases and their therapies. The initial
disease focus for the platform is COVID-19. In this context, the use cases we aim to work towards are as follows:

• Explain drug mechanisms based on existing experimental observations

– Example: through what mechanism does E64-D decrease SARS-CoV-2 replication?

• Propose new drugs that haven’t yet been tested

– Example: Leupeptin should be investigated since through protease inhibition, it is expected to decrease
SARS-CoV-2 entry.

• Causally/mechanistically explain high-level/clinical associations that are unexplained

– Example: What is the mechanistic basis for men being susceptible to more severe COVID-19 compared
to women?

• Construct reports on the implication of therapeutics on clinical outcomes, optimize course of therapy

– Example: Find the optimal course of interferon treatment using modeling and simulation.

6.1.2 Integration plan for the Bio Platform

The following diagram shows the integration architecture for the Bio Platform:

117

EMMAA Documentation, Release 1.16.0

The main components of this integration are as follows. The HMS team’s INDRA system integrates multiple knowl-
edge sources, including the Reach and Eidos machine-reading systems developed by the UA team. INDRA is also
integrated with UW’s xDD system where it is run on a subset of published papers and preprints to produce statements
that INDRA doesn’t otherwise have access to. xDD will also provide provenance information for relevant figures and
tables coupled to statement evidences.

INDRA produces statements daily that are picked up by EMMAA (each EMMAA model gets only statements that
are specifically relevant to its use case as controlled by a definition of model scope). Each EMMAA model then
assembles its statements in a use-case-specific way to produce an assembled knowledge base. This is then the basis of
generating multiple executable / analyzable model types (unsigned graph, signed graph, PyBEL, PySB) and applying
these models to automatically explain a set of observations (note that this process can also be thought of as “testing”
or “validation” of the model).

EMMAA integrates with the MITRE Therapeutics Information Portal by pulling in observations about drug-virus
relationships that it then explains. The resulting explanations (typically mechanistic paths) will be linked back to the
MITRE portal. The portal will also link to INDRA-assembled information on specific drugs and their targets.

EMMAA models will also link back to UW’s COSMOS system to provide additional annotations for documents they
index.

EMMAA will integrate with the Uncharted UI both at the level of the knowledge base that each model constitutes, and
the explanations produced by each model.

Finally, the COVID-19 EMMAA model will also attempt to form links with the Epi Platform by using causal rela-
tions between molecular and high-level (e.g., clinical, epidemiological) factors to connect therapeutic interventions to
epidemiology.

6.1.3 Progress during the ASKE-E Hackathon

Our teams made progress on multiple fronts during the first ASKE-E Hackathon.

First, with the UA team, we identified relevant resources for the lexicalization of protein fragments. The initial goal
was to identify and extract relevant terms from the Protein Ontology (https://proconsortium.org/). Due to the diversity
of features by which protein fragments are annotated in this ontology, identifying the right subset of terms has turned
out to be challenging, but we produced an initial set of terms that are now in the process of being added to the Reach
system’s bioresources.

From the MITRE team, we received an updated export of drug-virus relations from the Therapeutics Information
Protal which we ingested as a set of observations against the COVID-19 EMMAA model (see https://emmaa.indra.

118 Chapter 6. ASKE-E Reports

https://proconsortium.org/
https://emmaa.indra.bio/dashboard/covid19?tab=tests&test_corpus=covid19_mitre_tests
https://emmaa.indra.bio/dashboard/covid19?tab=tests&test_corpus=covid19_mitre_tests

EMMAA Documentation, Release 1.16.0

bio/dashboard/covid19?tab=tests&test_corpus=covid19_mitre_tests). The set of applied tests (i.e., observations) went
up from 1,839 to 2,641, and the number of explanatory paths found by EMMAA went up from 1,643 to 2,398. In
other words, we now produce explanations for an additional 755 drug-virus relationships.

With the UW team, we made technical specifications for how INDRA/EMMAA can provide annotations back to COS-
MOS that it can use for enhanced document indexing and retrieval. The two options (each with different advantages)
are to (1) integrate additional INDRA processing steps with the reading infrastructure running on xDD and allow COS-
MOS to ingest these outputs directly or (2) use assembled EMMAA knowledge and map these back (via document
identifiers) to COSMOS as annotations. We also discussed approaches to access relevant figures and tables connected
to statement evidence. UW will implement an API which takes a set of keywords, and optionally, a set of DOIs and
returns a ranked list of figures and tables.

As for the integration with Uncharted, we implemented a new JSON-L format for exporting and sharing EMMAA
models and made this available. We also provided ongoing help with accessing and interpreting the content of EM-
MAA models as well as the results of EMMAA explanations. In support of the latter, we developed a new JSON-L
based representation format for tests that provide a list of node names, a list of Statement hashes representing edges,
and other metadata necessary to identify the test for which the explanatory path was produced. We also provided an
export of all assembled knowledge potentially relevant to any of the EMMAA models, as well as access to a query
API for the same knowledge.

6.1.4 Open Search model queries and notifications

During this reporting period, we added a new “Open Search” capability to EMMAA’s model queries and notifications
feature. Until now, EMMAA’s notification tools have been focused on identifying new explanations for observed
cause-effect relationships. The primary use case for this feature is to support scientists who are interested in under-
standing possible mechanisms for a known biological effect.

With Open Search, users can specify a target and get updates on newly discovered regulators of the target (e.g., drugs),
or downstream effects (e.g., phenotypes). The motivation for this feature was to allow users to be notified of new
discoveries suggesting repurposable drugs for COVID-19. Not only can the user specify the type of target they are
searching from (e.g., the disease “COVID-19” or the viral co-receptor protein “TMPRSS2”), but also class of entities
they are searching for (e.g., chemicals, proteins, or phenotypes).

The figure below illustrates an EMMAA notification email for a variety of different open searches, including chemicals
affecting diseases (“COVID-19”), viruses (“Middle East Respiratory Syndrome Coronavirus”) and proteins (“ACE2”,
“TMPRSS2”, “CTSB”). In addition, it includes a search for new downstream effects of a particular drug, “leupeptin”:

As with notifications for causal paths, EMMAA keeps track of the previously reported results for the query and
generates updates for new results. The following image shows the initial set of paths returned for the query “What
inhibits COVID-19” in the unsigned network model:

6.1. ASKE-E Month 1 Milestone Report 119

https://emmaa.indra.bio/dashboard/covid19?tab=tests&test_corpus=covid19_mitre_tests
https://emmaa.indra.bio/dashboard/covid19?tab=tests&test_corpus=covid19_mitre_tests

EMMAA Documentation, Release 1.16.0

The paths show that EMMAA identifies drugs linked to COVID-19 via an intermediate node, the viral receptor ACE2:
both of the paths highlighted pointed to ACE2 inhibitors as possibly relevant drugs. While losartan entered clinical
trials early on as a potential COVID-19 therapeutic, piaglitazone was discussed only recently as potentially relevant
(see the paper “Can pioglitazone be potentially useful therapeutically in treating patients with COVID-19?”). With
this initial baseline established, we will be monitoring the results of these open searches for findings with implications
for new drug repurposing candidates.

6.2 ASKE-E Month 2 Milestone Report

6.2.1 Push science: EMMAA models tweet new discoveries and explanations

This month we implemented and deployed Twitter integration for multiple EMMAA models. We have previously
developed a proof of concept for Twitter integration, however, that framework had significant limitations. First, tweets
only described structural updates to a model (i.e., the number of new statements that were added) and did not report on
any functional changes or non-trivial new insights that were gained from the model update. Second, the tweets did not
point to any landing page where users could examine the specific changes to the model. In the new Twitter integration
framework, we addressed both of these crucial limitations.

Twitter updates are now generated for three distinct types of events triggered by the appearance of new discoveries in
the literature:

• New (note that “new” here means that a statement is meaningfully distinct from any other statement that the
model previously contained) statements added to a model.

• The model becoming structurally capable to make a set of new explanations with respect to a set of tests (e.g.,
experimental findings). This typically happens if a new entity is added to the model that was previously not part
of it.

• The model explaining a previously unexplained observation (in other words, passing a previously failing “test”).
These notifications are particularly important conceptually, since they indicate that the model learned something
from the newly ingested literature that changed it such that it could explain something it previously couldn’t.

The image below shows the first tweet from the [EMMAA COVID-19 model](https://twitter.com/covid19_emmaa).

120 Chapter 6. ASKE-E Reports

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7175844/
https://twitter.com/covid19_emmaa

EMMAA Documentation, Release 1.16.0

Crucially, each of the tweets above include a link to a specific landing page where the new results can be examined
and curated (in case there are any issues).

Overall, this framework constitutes a new paradigm for scientists to monitor the evolving literature around a given
scientific topic. For instance, scientists who follow the EMMAA COVID-19 model Twitter account get targeted
updates on specific new pieces of knowledge that were just published that enable new explanations of drug-virus
effects.

6.2. ASKE-E Month 2 Milestone Report 121

EMMAA Documentation, Release 1.16.0

6.2.2 Improving named entity recognition in text mining integrated with EMMAA
models

Having evaluated the performance of integrating protein cleavage product names from the Protein Ontology with the
Reach reading system’s resources, we found that the space of protein fragments covered and the quality of synonyms
was insufficient. We therefore implemented an alternative approach that involves extracting protein chain and fragment
names from UniProt and using these as synonyms for grounding purposes (see [Pull request](https://github.com/
clulab/bioresources/pull/42)). We found that this approach adds around 50 thousand new, high-quality lexicalizations
for protein fragments, including a large number of human proteins (e.g., Angiotensin-2) and viral proteins (e.g., Nsp1)
that are of interest for COVID-19 and many other applications in biology. The UA team is currently working on
finalizing these updates and we hope to run an updated version of Reach on the COVID-19 literature next month.

6.2.3 Making model tests and paths available for use by other applications

To facilitate integration of EMMAA test results with other applications we made data on model tests and causal paths
available for programmatic download. This feature was requested by the Uncharted team, who is exploring approaches
to visualize and interact with EMMAA results. The test and path data are stored in public JSON-L files on Amazon
S3 and are updated daily. Model test files contain a JSON representation of the EMMAA test statements; test path
files list the path nodes, the statement hashes supporting each edge in the path, the hash of the corresponding test,
and the type of causal network used to evaluate the test. Downstream applications can get the latest results from each
model-test corpus pair from stable Amazon S3 links.

6.3 ASKE-E Month 4 Milestone Report

6.3.1 EMMAA Neurofibromatosis Models and NF Hackathon Prize

During this reporting period we won one of the top prizes in the “Hack for NF”, a six-week event sponsored by the
Children’s Tumor Foundation to develop novel software relevant to neurofibromatosis (NF), a set of cancer syndromes
that affect children.

Our submission consisted of two causal models of NF deployed in EMMAA. The first model was built directly from
text mining the 18,000 PubMed articles about NF; it contains approximately 9,000 statements about the functions
and interactions of NF1, NF2, and other entities mentioned in those articles. Unlike the other cancer-related models
in EMMAA, the NF model does not specify an explicit list of disease-relevant proteins: the scope of the model is
defined strictly by neurofibromatosis keyword search terms. This keeps the content of the model as disease-specific as
possible, with the model serving as a comprehensive representation of what is known about NF.

For the second part of our submission, we substantially expanded our curated Ras signaling model to include mecha-
nisms relevant to NF1 and NF2 signaling. The model is transparent even for non-modelers because it is built from ~200
declarative English sentences and automaticalaly assembled by INDRA. In an iterative, test-driven process, we used
the reported causal relationships from the literature-based NF model that were unexplainable by the curated model to
both 1) identify errors in the literature derived model and 2) discover necessary extensions to the curated model.

As an example, the literature-based model contains the observation that NF2 inhibits PAK1. The extended curated
model shows that this this finding can be explained by a mechanistic path whereby NF2 competes Angiomotin
(AMOT) away from inhibiting ARHGAP17, allowing ARHGAP17 to inhibit CDC42, which would otherwise activate
PAK1.

As a further demonstration of the scientific value of automated model analysis, we converted drug screening data
from NF1 and NF2 cell lines into EMMAA tests and checked the literature-derived model against them. Interestingly,
we found that while the causal paths identified by the models were typically short, involving paths with a single
intermediate node (i.e., drug->protein->cell proliferation) the explanatory nodes were highly context-specific, in some
cases having been previously identified in the literature as therapeutic vulnerabilities for NF cell lines.

122 Chapter 6. ASKE-E Reports

https://github.com/clulab/bioresources/pull/42
https://github.com/clulab/bioresources/pull/42

EMMAA Documentation, Release 1.16.0

We see the two types of models (curated and literature-derived) as working synergistically to explain experimental
results and accumulate actionable knowledge, as shown in the diagram below.

For this hackathon entry, we won one of three top prizes. The press release from the Children’s Tumor Foundation can
be found here, and a video presentation describing our project can be found here.

6.3.2 Rapid initialization of EMMAA models from literature for two new diseases

The new Literature Prior module module makes the instantion of EMMAA models based on a subset of the scientific
literature straightforward. As input, the class takes a list of PubMed search terms and optionally a list of Medical
Subject Headings. It then automatically identifies relevant publications, and collects all statements from text mining
that were extracted from these papers. The model is then uploaded to AWS and is available for daily updates and
access via the dashboard. We used this method to start two new EMMAA models, for vitiligo and multiple sclerosis.

6.3.3 Downloading EMMAA models in alternative formats

The knowledge assembly approach in EMMAA allows exporting each model in multiple different modeling for-
malisms. In fact, EMMAA internally uses four different modeling formalisms (PySB, PyBEL, signed graph and
unsigned graph) for querying and analysis. However, these formats, and other community standards have not been
made available to users through the EMMAA dashboard.

We added multiple exports for each model that are generated during each model update (typically daily) and are
available through the EMMAA dashboard. Each model has the following export formats available:

• json.gz: A gzipped INDRA Statement JSON dump.

• jsonl: An uncompressed dump of INDRA Statement JSONs with one statement per line.

• indranet: A tabular (tsv) file where each row represents a single binary interaction between two entities. This
format is ideal for building networks from an EMMAA model.

Models that support PyBEL analysis provide a pybel export. In addition, models that support analysis at the rule-based
executable level are exported into the following formats:

• bngl: BioNetGen model representation (http://bionetgen.org/)

6.3. ASKE-E Month 4 Milestone Report 123

https://www.ctf.org/news/hack-for-nf-2020-winning-projects
https://www.youtube.com/watch?v=WI-NnFEXY_Y
https://emmaa.readthedocs.io/en/latest/modules/priors.html#literature-prior-emmaa-priors-literature-prior
https://emmaa.indra.bio/dashboard/vitiligo?tab=model
https://emmaa.indra.bio/dashboard/ms?tab=model
http://bionetgen.org/

EMMAA Documentation, Release 1.16.0

• kappa: Kappa model representation (https://kappalanguage.org/)

Finally, models that support reaction-network based analysis are exported into these formats:

• sbml: Systems Biology Markup Language (http://sbml.org/)

• sbgn: Systems Biology Graphical Notation (https://sbgn.github.io/)

6.4 ASKE-E Month 5 Milestone Report

6.4.1 Semantic filters to improve model analysis

Examining the explanations produced by the COVID-19 EMMAA model for in-vitro drug screening experiments,
we found that some of the explanations included causal mechanisms that were not consistent with the nature of the
experimental context being studied. For instance, in an experiment where a single drug is added in a controlled manner,
a mechanism that involves another drug (for instance via a drug-drug interaction) is not appropriate. Similarly, for an
in-vitro experiment, higher-level societal factors are semantically not appropriate as intermediate concepts on a causal
path.

Motivated by this, we implemented an approach to applying semantic filters to mechanistic paths that allow encoding
constraints on what is and isn’t allowed on paths when explaining a given observation. These constraints derive from
what is known about the experimental context in which that observation was made. For the observations used as test
conditions for the COVID-19 model, we created constraints to exclude small molecules other than the drug that is
used in the given experiment and higher level concepts including phenotypes, organisms and diseases. We found that
the quality of explanations found improved substantially and is now more appropriate semantically with respect to the
experimental context.

6.4.2 Model analysis exploiting ontological relationships

During this reporting period we extended the way EMMAA models are tested against experimental observations.
Previously, we applied tests to models based on a strict match between the entities in the test and the set of entities
in the model. However we noticed that in many cases models tended to consist of highly specific entities (e.g.,
individual proteins like KRAS, HRAS, and NRAS), whereas literature mining often picked up tests involving higher-
level ontological concepts (e.g., the RAS protein family). The limitation of this approach was that we could only return
a path based on exact matches between test and model entities, even when the model contained a path among more
specific entities that would serve as a test explanation.

In the new approach we allow relations among more specific concepts to serve as explanations for relations among
more general concepts (but not the reverse). Specificity is determined not only by hierarchical levels in the ontology
(e.g. a member of a protein family is more specific than the family entity), but also by the amount of contextual
information supplied for an entity (e.g., a protein with a phosphorylation is a more specific version of the same entity
without a phosphorylation). This information is used to determine which tests can be applied to the model and also to
find explanatory paths. To make this relationship explicit in our explanations, when a path found starts or ends with a
more specific version of a test entity, we add a special “is a refinement of” or “has a refinement” edge to the path.

We applied this new testing approach to the EMMAA COVID-19 model. For the tests from the MITRE Therapeutic
Information Browser Corpus (“MITRE Tests”), 174 new tests were determined to be relevant to the model when taking
refinements into account. For these tests, which generally take the form “drug X inhibits virus Y”, we found relevant,
more specific agents both for drugs (e.g., “rifampicin” is a type of “RNA polymerase inhibitor”) and viruses (e.g.,
“infectious bronchitis virus” is a type of “gammacoronavirus”). Of these new tests, 95 passed in the signed graph
network.

An example new passing test is shown in the figure below for the test condition “anticoagulant inhibits SARS-CoV-2”,
which was previously determined to not be relevant to the model due to the fact that the model did not contain the
specific entity for “anticoagulant” (CHEBI:50249). The model contains the information that heparin (CHEBI:28304),

124 Chapter 6. ASKE-E Reports

https://kappalanguage.org/
http://sbml.org/
https://sbgn.github.io/

EMMAA Documentation, Release 1.16.0

a type of anticoagulant, inhibits SARS-CoV-2, and the system now returns the explanation that “anticoagulant has
refinement heparin; heparin inhibits SARS-CoV-2.”

6.4.3 Improved reading and assembly of protein chains and fragments

Protein chains and fragments are important both for human and viral biology. In ASKE-E month 2, we reported having
extended the Reach reading system with lexicalizations of these entities from UniProt and the Protein Ontology (PR).
This month, we made a number of extensions to our software stack to propagate these extensions in a useful way.

First, UniProt and PR have a large number of overlapping entries but neither source provides mappings to the other
at the level of protein chains (only full protein entries). We developed a semi-automated approach to find and curate
these mappings. We used Gilda to find lexical overlaps between the two ontologies and put these as predictions into
the Biomappings repository and curation tool. We then curated these mappings to confirm correct ones and remove
incorrect ones. These mappings were then propagated into the INDRA Ontology graph to be used for standardization.

Second, we found that the names of protein chains (similar to the names of full proteins) are ambiguous across organ-
isms. This is especially problematic with the large number of viral species and strains that contain protein chains with
identical or similar names. Current machine reading systems including Reach typically cannot disambiguate across
these choices and produce highly ambiguous groundings for these viral proteins. Therefore, contextual information
needs to be brought in externally to decide which organism to prioritize when selecting a grounding produced by
Reach. To this end, we implemented an organism prioritization scheme whereby the user (or some external automated
process) can supply a ranked list of organism identifiers to represent priority. This list is then used to guide how to the
grounding of proteins and protein chains is selected. For example, if a paper is known to describe SARS-CoV-2 and
human biology, one can supply an organism priority list including the identifiers of these two organisms to exclude or
de-prioritize any spurious groundings from e.g., other viral strains that are irrelevant in the given context. Further, the
organisms which a paper describes can be obtained from annotations that are either provided directly with the paper
in PubMed or can be obtained using dedicated NLP systems set up for this task e.g, the MTI system.

Going forward, we will re-process the COVID-19 papers with these features in place and expect that the quality of
reading, extraction and assembly for virus-host interactions will improve significantly.

6.4.4 Bio ontology optimized for visualization

We implemented a custom export of the INDRA BioOntology graph that is optimized for organizing nodes in a UI. The
idea is to create top-level groups of entities that correspond to an intuitive category (e.g., human genes/proteins, non-
human genes/proteins, small molecules, diseases, etc.). EMMAA models don’t contain this information about their
entities directly, rather, they are inferred from identifiers assigned to each entity in a given set of name spaces. However,
some name spaces contain multiple types of entities (e.g., MESH contains small molecules as well as diseases) and
some entity types are distributed across multiple name spaces (e.g., human genes/proteins can be grounded to HGNC,
UniProt, FamPlex, etc.). In this custom export, we split some name spaces and merged others to create a more ideal
resolution and shared this export with the Uncharted team.

6.4. ASKE-E Month 5 Milestone Report 125

https://github.com/indralab/gilda
https://github.com/biomappings/biomappings

EMMAA Documentation, Release 1.16.0

6.5 ASKE-E Month 6 Milestone Report

6.5.1 Reading and assembly with context-aware organism prioritization

A key challenge in monitoring the COVID-19 literature and modeling the effect of new discoveries is that descriptions
of mechanisms span multiple organisms. First, we need to be able to recognize both viral proteins and human (or other
mammalian) proteins in text and find possible database identifiers for them. Second, we need to deal with substantial
ambiguity in protein naming between viral species.

By default, the Reach reading system’s named entity recognition module is configured to tag only human proteins
in text. This month, our team developed a script which cross-references UniProt protein synonyms with the NCBI
Taxonomy to allow generating customized named entity resources which include protein synonyms for custom sub-
trees of the Taxonomy. We used this script to generate named entity resources that include all human proteins as
well as protein synonyms for all different viral species. We then compiled a custom version of Reach including these
resources.

Next, we implemented a new feature in INDRA which allows processing Reach output with context-dependent organ-
ism prioritization. For a given paper with a PubMed ID, we can draw on Medical Subject Headings (MeSH) annota-
tions to find out about organisms that are being discussed. For instance, papers about Ebola are (typically) tagged with
the MeSH heading D029043 (https://meshb.nlm.nih.gov/record/ui?ui=D029043), and papers about SARS-CoV-2 with
MeSH heading D000086402 (https://meshb.nlm.nih.gov/record/ui?ui=D000086402). Once we have a pre-defined or
paper-specific list of relevant organisms, we can process Reach output with this order in place to choose the highest
priority UniProt entry for each ambiguous entry having been matched.

While our focus here is on coronaviruses (and in particular on SARS-CoV-2), these new capabilities can be applied
to studying other types of existing viruses, or monitoring the literature on future emerging viral outbreaks. We have
tested the above grounding approach locally but haven’t yet re-processed the entire body of literature (~100k papers)
underlying the EMMAA COVID-19 model. We plan to do this in the next reporting period.

6.5.2 Preparing for the stakeholder meeting

The EMMAA COVID-19 model is considerably large since it is configured to monitor all of the COVID-19 literature
without any further restrictions on model scope. Consequently, for more focused (e.g., pathway-specific) studies, it
makes sense to start with subsets of this overall knowledge, and demonstrating this type of more focused model-driven
analysis is one of the goals at the upcoming stakeholder meeting. To prepare for this, we defined six distinct ways in
which our models and REST services can be used to obtain subsets of knowledge on COVID-19 mechanisms, and to
extend them using expert knowledge.

First, the EMMAA COVID-19 model can be queried in at least two ways: using a paper-oriented or an entity-oriented
approach. In the paper-oriented case, one searches for elements of the EMMAA COVID-19 model that have support
from one or more specific publications. In the entity-oriented case, one defines a list of entities of interest, and queries
for all model statements that involve one or more of those entities. The advantage of the paper-oriented approach is
that one does not need to curate a specific entity list up front, but due to potential recall issues with automated reading,
there is no guarantee that a mechanism of interest will have been extracted from any specific paper. In contrast, the
entity-oriented approach provides more reliable coverage for the given set of entities while potentially, inadvertently
ignoring other relevant mechanisms.

Second, the general INDRA DB can be used to query for information. The REST API supports both entity-oriented and
paper-oriented queries here as well. The main difference compared to querying the EMMAA model is that the INDRA
DB results are unfiltered (they can statements that have been marked as incorrect, ungrounded entities, statements out
of scope, etc.) and may require post-processing to get good quality results for a focused modeling study.

Finally, we provide features for experts to build models from scratch or extend automatically initialized models. For
instance, the INDRA API provides an endpoint to run a machine-reading system on a given span of text (e.g., one
describing mechanisms for a given pathway in simple English sentences) and process these into INDRA Statements.

126 Chapter 6. ASKE-E Reports

https://meshb.nlm.nih.gov/record/ui?ui=D029043
https://meshb.nlm.nih.gov/record/ui?ui=D000086402

EMMAA Documentation, Release 1.16.0

We provided pointers to the Uncharted team for invoking all of these service endpoints.

6.5.3 Reporting curation statistics

While the update and assembly of EMMAA models is automated, users can manually curate model statements to
remove any incorrect extractions and provide better mechanistic explanations. Previously, the EMMAA dashboard
allowed submitting and browsing individual curations, but we did not have UI support for users to see statistics on
curations at the model level. To address this, we added a new “Curation” tab on the EMMAA model dashboard. In this
tab we show the number of curations submitted by individual curators for statements that are part of a given model. We
display the counts for both individual evidences and unique assembled statements. This differentiation is important
because each assembled statement may be supported by multiple evidences. In addition, curation information affects
the assembly process: all statements that have been curated as incorrect and do not have any evidences curated as
correct are filtered out from the model.

Fig. 1: Curators of COVID19 EMMAA model

We also report the number of curations grouped by their type. This shows what errors are the most frequent and helps
prioritize further development.

Another aspect of curations we report is how the number of curated statements and evidence changed over time. The
figure below shows the time series plot of the number of curations for the COVID-19 model. The first few points here
predate the pandemic and the model creation. This is due to the fact the COVID-19 model also integrates a set of older
papers on coronaviruses, and some statements from those papers were curated earlier.

6.5. ASKE-E Month 6 Milestone Report 127

EMMAA Documentation, Release 1.16.0

Fig. 2: Curations grouped by type

Fig. 3: Curations over time

128 Chapter 6. ASKE-E Reports

EMMAA Documentation, Release 1.16.0

6.5.4 Reporting paper level statistics

INDRA processes thousands of publications daily and different EMMAA models make use of different subsets of
these. Previously, the EMMAA dashboard didn’t provide a dedicated interface for examining the papers that have
contributed to each model. In particular, some of the limitations were: 1) It was only possible to see evidences/links
to publications for statements that were included in the model after assembly. 2) The evidences/links to publications
were grouped by interaction and not by paper. 3) It was not possible to view the papers that produced statements that
were filtered out during assembly or papers from which no statements were extracted at all.

In this reporting period we added a new “Papers” tab on each EMMAA model page, and also created a new “statements
from paper” service endpoint.

On the “Papers” tab we show the changes in the number of processed papers and the number of papers we get assem-
bled statements from over time.

Fig. 4: Number of processed papers and papers with assembled model statements over time

We also show the list of papers with the largest number of statements as well as the list of newly processed papers.

Fig. 5: Example of new processed papers table

Each paper title here links out to a new page that shows the model statements extracted from that given paper. This
provides a way to explore statements that were all extracted from the same paper. The second column in this table
provides a link to the original publication as an external resource.

6.5. ASKE-E Month 6 Milestone Report 129

EMMAA Documentation, Release 1.16.0

6.5.5 Integrating non-textual evidence with EMMAA models

An important goal in extending EMMAA is to tie the causal mechanisms models are built of to evidence not only
in text but also figures and tables. The xDD platform developed at UW provides multiple entry points for querying
figures and tables. One approach is to search by entities (e.g., “ACE2, TMPRSS2”) to find relevant figures from
multiple papers relevant for these entities. Another approach is to search for any figures and tables available for a
given paper.

As a proof of principle or integration, we created a client for the second query approach (i.e., find figures and tables
by paper identifier) in EMMAA. When displaying the set of statements in an EMMAA model from a given paper,
the “Statements” tab allows examining the individual EMMAA statements with their supporting (textual) evidence. A
new “Figures” tab contains relevant figures fetched from xDD that can provide additional context and evidence for the
model statements.

The figure above shows an initial proof of principle for the paper “Investigating Ketone Bodies as Immunometabolic
Countermeasures against Respiratory Viral Infections”. On the left, the Statements tab highlights the statement
“NFkappaB binds HCAR2” and an evidence sentence describing “. . . BHB interaction with HCAR2 and Nf-kB. . . ”.
On the right, the Figures tab shows a directly relevant figure of the interaction between NF-kappaB, HCAR2, and
BHB. The visual nature of the figure clearly complements the textual evidence here and may provide users with a
richer overall understanding of mechanisms of interest.

This feature is not yet deployed on the main EMMAA dashboard. We are continuing to work on the modes in which
figure/table information is integrated with EMMAA and are exploring the possibility of making use of entity-oriented
queries to connect figures/tables to EMMAA models.

6.6 ASKE-E Month 7 Milestone Report

6.6.1 Natural language dialogue interaction with EMMAA models

This month we developed a new feature that allows users to directly “chat” with an EMMAA model. The main idea
is to make use of the CLARE dialogue system we have previously developed, and create custom instances of it, on
demand, that load a given EMMAA model and conduct dialogue with respect to that model. An instance of the

130 Chapter 6. ASKE-E Reports

EMMAA Documentation, Release 1.16.0

CLARE system is running on a remote server and can handle multiple independent user sessions simultaneously. Chat
sessions are orchestrated through the Pusher framework (https://pusher.com/) which handles the real-time aspects of
the chat interaction (initialize new user session, asynchronously listen to messages, deliver messages to connected
clients, etc.). In EMMAA, we implemented a Pusher chat client which integrates into the main EMMAA dashboard.
When clicking on the “Chat” button on the card representing a model on the EMMAA dashboard, a new page opens
up where the user can put in their email (this is automatically populated if the user is logged in) and start the chat
session. They can then talk about a variety of topics, including mechanisms represented in the given EMMAA model.

The image below shows the new “Chat” buttons on the EMMAA dashboard:

The screenshots below show dialogues with two different EMMAA models: the MARM model above and the RAS
model below. The first question “what does BRAF interact with?” highlights the fact that in the two sessions, these
questions are answered with respect to two different model contexts. In the MARM model, we find that “BRAF can
interact with BRAF, RAF1, KRAS, MAPK1, and vemurafenib”, whereas in the RAS model, we find that “BRAF can
interact with MAP2K1, SRC, KRAS, and BAD”.

Chat with the MARM model:

6.6. ASKE-E Month 7 Milestone Report 131

https://pusher.com/

EMMAA Documentation, Release 1.16.0

Chat with the RAS model:

A key feature of human-machine dialogue as implemented by CLARE is that it maintains dialogue context and can
interpret and answer follow-up questions using co-references that refer to previous questions or answers. This allows
exploring complex mechanisms, such as ones represented by EMMAA models, sequentially. This kind of sequential
exploration with intuitive co-reference resolution would be difficult to implement using traditional form-based web
interfaces.

The two dialogues above also demonstrate this context-aware co-reference resolution feature. For instance, the ques-
tions “are any of those small molecules?”, “are any of those kinases?” or “are there any drugs for any of those?” are
all questions making use of this feature.

132 Chapter 6. ASKE-E Reports

EMMAA Documentation, Release 1.16.0

We plan to improve the rendering of some answers (bulleted lists, HTML formatting, etc.) in the coming weeks. We
will also improve session management on the back-end to allow terminating sessions explicitly thereby freeing up
resources. Finally, we plan to make more tutorials and demos available for this dialogue integration to help users make
best use of it.

6.6.2 Automatically generated text annotations in context

We implemented a new integration with the hypothes.is that allows taking statements extracted from a given paper,
and annotating the website for that paper (a PubMed or PubMed Central landing page, or publisher-specific page) with
these statements. First, we implemented an approach to deriving annotation objects from statements. Each hypothes.is
annotation consists of a URI (i.e., the address of the page to be annotated), annotation text (i.e., the actual content of
the annotation), and a target (a specific text span on the web page that the annotation applies to). The annotation text
represets a human-readable English sentence derived from the statement with the names of entities rendered as links to
outside ontologies representing them. The target of the annotation is the evidence sentence from which the statement
was originally extracted. We can then use the hypothes.is API, for which we implemented a new and extended client,
to upload these annotations on demand for a given paper.

We then integrated with new feature with EMMAA. As an extension of the paper-centered view of model statements
reported last month, we added a new “hypothes.is button” which allows annotating a given paper on demand and then
looking at the annotations in the context of the actual paper. The figure below illustrates the relevant part of the updated
“Paper” tab on the EMMAA dashboard.

For each paper from which statements were extracted, a small hypothesis (“h.”) badge is now displayed. Clicking on
this badge starts the process of uploading the annotations for statements extracted from this paper. After all annotations
are added, an external page with this paper opens up in a new tab. In addition, a link to this page is displayed on the
EMMAA website.

Viewing the uploaded annotations requires the user to install the hypothes.is extension in their browser. The figure
below shows how annotations can be viewed and edited on the newly opened page. In this example, a paper on PubMed
Central was automatically annotated. The sentences supporting each of the extracted statements are highlighted in
the paper and the statements can be viewed in the annotations panel on the right. For instance, this image shows the
highlighted sentence mentioning “FGF1–heparin complex” and the extracted “heparin binds FGF1” INDRA statement.

6.6. ASKE-E Month 7 Milestone Report 133

EMMAA Documentation, Release 1.16.0

Currently, these annotations are only visible by members of a closed group on hypothes.is, however, we have requested
that hypothes.is make annotations in the group publicly visible, and hope that this will be done soon.

6.6.3 Demonstrations at the stakeholder meeting

The February 2021 stakeholder meeting focused on system integration: we demonstrated how EMMAA models can
be displayed and interacted with in the HMI developed by Uncharted. First, we showed how a keyword search for an
entity of interest can lead a user to “discover” a relevant paper and then an EMMAA model which contains mechanisms
surrounding the given entity. The user can then interact with a network view of the model, highlighting interactions
derived from the paper of interst in the context of all concepts organized by their ontological categories (for instance, a
search for IL6 connects the node representing it in the “Human proteins” category with the node representing SARS in
the “Infections” category). The HMI is also able to visualize the subnetwork corresponding to the specific paper on a
separate tab. The user can then click on a node to see additional incoming or outgoing interactions and click ont them
to add them to this view. The figure below shows interactions highlighted in the context of ontology-based categories
on the left, and the separate view of interactions derived from a given paper on the right.

We also showed how the results of model queries can be displayed in the HMI. Here we focused on small molecules
that can inhibit the replication of SARS-CoV-2 through an intermediary of interest: the Nrf-2 (NFE2L2) protein.
Based on the ontology-guided grouping, the HMI provides an intuitive overview of what types of entties are on each
mechanistic path from a drug to SARS-CoV-2. For instance, sildenafil, which is grouped under “vasodilator agents”
is shown to regulate the activity of NFE2L2 which in turn can regulate SARS-CoV-2 replication. We also showed
examples of drugs inhibiting SARS-CoV-2 via cathepsins. The figure below shows mechanisms by which drugs
regulate SARS-CoV-2 via NFE2L2. More detail can be seen by zooming and panning in the HMI.

134 Chapter 6. ASKE-E Reports

EMMAA Documentation, Release 1.16.0

6.6.4 Developing the EMMAA REST API for flexible integration

We continued working on extending the EMMAA REST API to support integration with other teams. One of the key
goals was to allow dynamic retrieval of EMMAA models and tests metadata. To enable this, we implemented four
new endpoints in the EMMAA REST API that support the retrieval of the following data:

• A list of all available EMMAA models;

• Model metadata (short name, human readable name, description, links to the NDEx landing page and to the
model’s Twitter account) for a given model;

• A list of test corpora that a given model is tested against;

• Test corpus metadata (name and description) for a given test corpus.

Another important extension of the EMMAA API we implemented is the support for running queries programmat-
ically. Previously it was only possible to submit queries through a web form on the Query page of the EMMAA
dashboard and then browse the displayed results. The new approach allows sending programmatic requests to the
API and receive the results in JSON format. Similar to the interactive interface on the dashboard, the programmatic
endpoint supports three types of queries: static (find directed paths between two entities), open search (find upstream
regulators or downstream targets of an entity), and dynamic (confirm dynamical model properties by simulating the
model) queries.

6.6. ASKE-E Month 7 Milestone Report 135

EMMAA Documentation, Release 1.16.0

6.7 ASKE-E Month 9 Milestone Report

6.7.1 Integrating the COVID-19 Disease Map community model

One of our goals in this project is to demonstrate the capability to take an existing model constructed by others in the
community and instantiate it as an EMMAA model. One approach for doing this is to take the model in its original
form and extend it with some meta-data to allow running it for the purposes of validation and analysis within EMMAA.
Another approach is to process the original model into knowledge-level assertions - in our case INDRA Statements
- and instantiate this set of statements as an EMMAA model. As the first proof of principle, we decided to take the
latter approach since it results in a more transparent model with all necessary annotations available to display model
statistics, testing and query results on the EMMAA dashboard. Due to its direct relevance to our applications and its
interesting connection with our existing automatically assembled COVID-19 EMMAA model, we decided to work
with the COVID-19 Disease Map model.

The COVID-19 Disease Map (C19DM) is a large model of molecular mechanisms related to SARS-CoV-2 infection
and COVID-19 curated collaboratively by a consortium of experts. It models all known SARS-CoV-2 protein in-
teractions with human host proteins, and multiple pathways that are triggered by these interactions. It also models
phenotypic outcomes associated with COVID-19, for instance, cytokine storm, thrombosis, vascular inflammation,
ARDS, etc.

The C19DM is being built using CellDesigner and can be explored or programmatically obtained through the MIN-
ERVA platform. Using the CASQ tool, the model has also been transformed into a Simple Interaction Format (SIF)
that can be used as the basis for causal analysis or Boolean/logical modeling.

We implemented a new client and processor in INDRA to process the C19DM SIF files in conjunction with meta-
data (entity grounding, literature references, etc.) from MINERVA into INDRA Statements. We then initialized an
EMMAA model with these statements (see model card below).

136 Chapter 6. ASKE-E Reports

EMMAA Documentation, Release 1.16.0

The next step was to set up the model for automated analysis against a set of relevant empirical observations. We chose
three sets of observations to analyze the model against: (1) a set of in-vitro drug screening experiments, (2) a set of
empirical assertions on drugs inhibiting SARS-CoV-2 infection or adverse outcomes associated with COVID-19 (aka
the MITRE test corpus), and (3) text mining statements automatically collected by the existing EMMAA COVID-19
model. We used both signed graph and unsigned graph instantiations of the C19DM EMMAA model for analysis.

In case of the in-vitro drug screening data, each data point can be interpreted as “Drug X inhibits SARS-CoV-2
replication”. Viral replication appears as a concept in the C19DM model and can be used as a readout in this case.
However, most drugs that appear in the screening data aren’t modeled in the C19DM. We therefore extended the
EMMAA C19DM model with these drugs and their known targets within the C19DM using statements independently
assembled by INDRA from multiple sources. The in-vitro drug screening corpus is relatively small and the EMMAA
C19DM model (instantiated as a signed graph model) could explain 10 such observations, including how “nafamostat
inhibits viral replication”. The explanation in this case involved nafamostat inhibiting TMPRSS2’s activation of ACE2
which enables viral replication:

6.7. ASKE-E Month 9 Milestone Report 137

EMMAA Documentation, Release 1.16.0

As for the second corpus, these empirical assertions aren’t necessarily associated with SARS-CoV-2 replication per
se, rather, they imply that a given drug is beneficial in inhibiting some COVID-19-associated adverse outcome. While
there are several phenotypic nodes that could be considered readouts for this purpose in the C19DM (e.g., thrombosis,
cytokine storm, ARDS, etc.), we don’t want to assert up front which one of these a given drug affects. Therefore, we
added a new readout concept to the model called “COVID-19 adverse outcome” and added positive regulation relations
between each specific adverse outcome concept and this new one. Similar to the case of in-vitro drug screening as
described above, we also added external drug-target statements relevant for this corpus.

The sketch below illustrates the two types of model extensions done to make the model applicable to these analysis
tasks.

For this corpus the C19DM EMMAA model, instantiated as a signed graph was able to explain 463 test statements.
It is particularly interesting to observe which specific phenotypic outcome the explanation involves as a “COVID-19
adverse outcome”. For example, for the observation that “aliskiren inhibits COVID-19 adverse outcomes”, EMMAA
finds an explanation in the C19DM in which aliskiren inhibits angiotensin which - through some intermediaries - leads
to reduced vascular inflammation, one of the adverse outcomes associated with COVID-19:

138 Chapter 6. ASKE-E Reports

EMMAA Documentation, Release 1.16.0

Finally, we set up the existing EMMAA COVID-19 model (which aggregates knowledge about COVID-19 largely via
text mining the existing and emerging literature) as a set of assertions to be explained by the C19DM. Conceptually
this is an interesting analysis task since the EMMAA COVID-19 model contains many assertions about indirect effects
(e.g., “azythromycin activates autophagy”, see below) that were reported in the literature but not necessarily explained
mechanistically, while the C19DM is a detailed, mechanistic and high-precision (in that it is human curated rather than
automatically assembled) model that is likely to contain mechanistic paths that can serve as interesting explanations.
As an example, below is the explanation constructed for the “azythromycin activates autophagy” example.

Another example involves the observation that “viral N protein downregulates interferon” which the EMMAA C19DM
model explains through the SARS-CoV-2 N protein’s inhibition of human IRF3.

6.7. ASKE-E Month 9 Milestone Report 139

EMMAA Documentation, Release 1.16.0

Going forward, we will work on instantiating the C19DM as a simulatable Boolean network within EMMAA and will
also work towards importing other existing models into EMMAA for automated analysis.

6.7.2 Notifications about general model updates

One of the key concepts of EMMAA is “push science” - notifying users of new discoveries relevant to their research.
Previously reported developments in this direction included subscribing to query results and tweeting about new find-
ings. We recently made a new step towards this goal and added a feature allowing users to subscribe to a model of
their interest.

To subscribe to model notifications, a user needs to click the “Subscribe” button on the model dashboard. The models
are updated and tested daily and every time there are any new findings, a subscribed user will receive an email with
updates. New findings can include new mechanisms added to the model from the literature, new tests applied to a
model, or new explanations found for the tested observations.

We refactored our code base to separate all code related to notifications (tweets and emails about model updates and
emails about new query results) into a subscription.notifications submodule. This allows sharing and reusing relevant
parts of code.

6.7.3 Figures and tables from xDD as non-textual evidence for model statements

We previously reported on displaying figures and tables from a given paper through the integration with the xDD
platform developed by UW. That approach supports an exploration of different mechanisms described in the context
of a single paper by viewing both their text description and visual representation.

In this reporting period we added support for displaying figures and tables relevant for a given mechanism rather
than for a particular paper. To enable this we used xDD entity based search mode that allows searching for objects
associated with one or more entities across their knowledge base. For our use case we are searching for figures and

140 Chapter 6. ASKE-E Reports

EMMAA Documentation, Release 1.16.0

tables where both statement subject and object are involved. As a result, we can display both textual and non-textual
evidence for a given statement coming from different papers.

In the image above the text evidence and figures for the statement “ACE2 binds SARS-CoV-2” are shown. Both text
and figures are from different papers and have links to the original publications.

6.7.4 Integration with the Uncharted UI

We continued working on the integration of EMMAA with the Uncharted UI and made progress on several fronts.
Model exploration in the UI is divided into two parts, a large-scale network overview, and a more focused drill-down
view.

For the network overview, our concept was to use the INDRA ontology - which is assembled from third-party ontolo-
gies in a standardized form - to hierarchically organize nodes in the network (each node represents a biological entity
or concept) into clusters. This visualization is most effective and clear if the hierarchical structure of the ontology is
fully defined, i.e., every entity is organized into an appropriate cluster, and the hierarchy is organized into an appro-
priate number of levels. Motivated by this, we spent considerable effort on improving the INDRA ontology’s inherent
structure, as well as creating a custom export script which makes further changes to the ontology graph specifically to
improve the visual layout in the UI.

We also added multiple new features to the EMMAA REST API to support UI integration. For example, we added an
endpoint to load all curations for a given model, categorizing curated statement into correct, incorrect and partial labels.
Another important feature is providing general information about entities in each model, including a description,
and links to outside resources describing the entity. To this end, we implemented a new service called Biolookup
(which will be separately deployed) that provides such information for terms across a large number of ontologies in a
standardized form. We then added an endpoint in the EMMAA REST API which uses Biolookup to get general entity
information and can also add model-specific entity information to the response.

Our teams have also been involved in many ongoing discussions. These included deciding on use cases, visual styles,
and all aspects of the interpretation of EMMAA models in order to present them to users in an appropriate way.

6.7.5 Semantic separation of model sources for analysis and reporting

When creating a model of a specific disease or pathway, it often makes sense to add a set of “external” statements to
the model to make it applicable to a specific data set. A typical example is adding a set of drug-target statements or a
set of phenotypic “readout” statements to a model to connect it to a data set of drug-phenotype effects. These external
statements should ideally not appear in model statistics. For example, for the COVID-19 Disease Map model, we
marked all drug-target and penotype-readout statements as external since these were not part of the original model.

6.7. ASKE-E Month 9 Milestone Report 141

EMMAA Documentation, Release 1.16.0

Another categorization of statements in models is “curated” vs “text mined”. For instance, the COVID-19 model
combines statements mined from the literature with statements coming from curated sources such as CTD or Drug-
Bank. Given that we use the COVID-19 Disease Map Model to automatically explain observations that appear in the
COVID-19 Model, it makes sense to restrict these explanations to statements that aren’t “curated”.

To achieve this, we extended the EmmaaStatement representation to contain metadata on each statement that then
allows the statements to be triaged during statistics generation and model analysis.

6.7.6 Assembling and analyzing dynamical models

During this period, we aimed to strengthen EMMAA’s capability to execute and analyze dynamical models. Previ-
ously, EMMAA’s dynamical queries supported checking “unconditional” properties, for instance, whether in a model
“phosphorylated BRAF is ever high”. This captures a model’s baseline dynamical behavior without any specific per-
turbation condition. Further, EMMAA only supported deterministic and continuoys ODE-based simulation of models.

We added support for a new simulation mode, namely continuous-time, discrete-space stochastic simulation using the
Kappa framework. One important advantage of this approach is that - unlike the ODE-based approach - it does not
rely on enumerating all molecular species that can exist in the system ahead of simulation. Instead, an initial mixture
of molecular species is evolved, through a set of reaction rules, and new species can be created during simulation if
any reaction rules produce them. However, stochastic simulation is typically slower than ODE-based simulation.

Further, we also implemented a new query mode for dynamical models that can be used to observe model behavior
under perturbations. For instance, it allows answering the query “does EGF increase phosphorylated ERK?” in a
model by setting up a pair of simulation experiments in which EGF is either at a low or a high level, and then
quantifying the difference in the temporal profile of phosphorylated ERK between the two condition (the outcome is
either “increase”, “decrease” or “no change”). This is useful for interactive user-driven queries but can also be used
for model testing/validation against a specific set of observations.

There are numerous challenges involved in evaluating the dynamics of automatically assembled EMMAA models. For
very large models such as the COVID-19 model, it makes sense to think of “executable subnetworks” that are assem-
bled to answer a specific set of queries instead of attempting to simulate the entire model. We began implementing an
assembly pipeline that performs additional filtering, reasoning and processing on assembled knowledge to prepare if
for execution. These steps involve filtering to “direct” statements to remove indirect/bypass effects, rewriting molecu-
lar states in statements to improve the causal connectivity of the model, and filtering out “inconsequential” statements
to cut down on the size of the model. We also implemented a new analysis feature that can detect potential polymeriza-
tion (where molecular species can form arbitrarily large complexes as the system evolves) in a model which precludes
ODE-based simulation and can result in slower stochastic simulation. For now, these detected polymerizations can
help manually patch models, however, it might be possible to automate the addition of constraints to a model to avoid
polymerization. Another problem is that of model parameterization. EMMAA models could be connected to relevant
expression profiles to set total protein amounts as initial conditions, while reasonable priors can be chosen for reaction
rate constants. Beyond that, the uncertainty in model parameters can be resolved by any combination of (1) fitting the
model to data, (2) performing ensemble analysis that “integrates” over the model uncertainty, and (3) user interaction
to set parameter values manually.

6.7.7 Creating a training corpus for identifying causal precedence in text

One of our goals during this period (in collaboration with the UA team) was to extend the Reach reading system with
the ability to recognize causal precedence in text. An example of causal precedence expressed in text is the following
sentence: “insulin binding of the insulin receptor (IR) at the cell surface activates IRS-1 intracellularly, which in turn
activates PI3K”. This sentence not only implies that (a) IR activates IRS-1 and (b) IRS-1 activates PI3K but also
speficically suggests that (a) is a causal precedent of (b). Given that not all A->B and B->C relationships that are
independently collected necessarily imply A->B->C in any specific context, explicit descriptions of such knowledge
are extremely valuable for understanding complex causal systems.

142 Chapter 6. ASKE-E Reports

EMMAA Documentation, Release 1.16.0

One challenge is collecting a large corpus of training data which consists of sentences with causal precedences de-
scrbing some A->B->C causal chain without manual curation effort. Our idea was to start from curated databases to
identify causal A->B->C sequences. Knowledge bases such as Reactome, KEGG and SIGNOR are organized into
pathways, and the same molecular entity may appear in multiple pathways and be involved in different interaction in
each pathway. This implies that to find relevant causal precedence examples, it makes sense to search for A->B and
B->C relationships within the scope/context of a single curated pathway (instead of all curated knowledge combined).
We ran this search on both Reactome and SIGNOR pathways and found that results from SIGNOR were higher quality
and consistent with expected positive and negative controls.

Next, we searched all existing outputs from Reach to find instances of A->B and B->C relationships (from the set
identified from SIGNOR) extracted from a single paper, and either a single sentence or two neighboring sentences.
We found a total of 782 such sentences automatically. These sentences will become the training set for learning to
recognize causal precedence.

We made our code available at https://github.com/indralab/causal_precedence_training and will continue to extend it
to find further opportunities for automated training data collection.

6.7.8 Knowledge/model curation using BEL annotations

We have previously described an integration with hypothes.is. This integration has supported two usage modes: (1)
users can select sentences on any website and add annotations in simple English language that can be processed into
statements automatically, and (2) text mined statements can be exported and uploaded as annotations onto the websites
(for instance PubMedCentral) where they were originally extracted from.

Though usage mode (1) is convenient, NLP on even simple sentences can sometimes be unreliable and therefore
we decided to implement support other intuitive but formal syntaxes for annotation. Our preferred choice was the
Biological Expression Language (BEL) which allows expressing a wide range of causal relationships relevant for
biology. For instance, the BEL statement “kin(p(FPLX:MEK)) => kin(p(FPLX:ERK))” expresses that the kinase
activity of the protein family MEK directly increases the kinase activity of the protein family ERK. Building on
the PyBEL package and the existing BEL-INDRA integration we added support for parsing BEL statements from
hypothes.is annotations into INDRA Statements. We plan to use this capability to build new human-curated models or
extend existing ones in EMMAA.

6.7.9 Formalizing EMMAA model configuration

Each EMMAA model has to be set up with its own configuration settings in a JSON file. The settings allow to store
model specific metadata (e.g. short and human readable name, links to NDEx visualization and Twitter accounts)
that are displayed on the model dashboard as well as to configure the methods to update and assemble the model, run
test and queries and generate statistics reports. With the number and diversity of EMMAA models growing we felt
the need to document the requirements to the model configuration. The detailed instruction on what information the
configuration file should contain with examples can be found at Configuring an EMMAA model

6.8 ASKE-E Month 10 Milestone Report

6.8.1 Dynamical model analysis

We made several developments that significantly extend the ways in which EMMAA models can be analyzed using
simulation.

6.8. ASKE-E Month 10 Milestone Report 143

https://github.com/indralab/causal_precedence_training

EMMAA Documentation, Release 1.16.0

Extended automated assembly for model simulation

As described previously, EMMAA contains models built using several different approaches ranging from small human-
defined models written in simple English to large fully automatically assembled models from up to hundreds of thou-
sands of publications. There is a special set of challenges associated with models built automatically from source
knowledge as follows:

• Several EMMAA models are very large, making simulation impractical.

• EMMAA models that are automatically assembled from literature and pathway databases can by default include
“bypass edges”, i.e., relationships that are reported in some source which are not direct physical interactions but
indirect effects.

• There are complicated redundancies at the level of individual mechanisms, for instance a model can simultane-
ously contain “A activates B”, and “A phosphorylates B”, without an explicit relationship between the two. This
can create inconsistent “parallel” pathways over different states of B.

• Models that include text mining output are naturally subject to some amount of incorrect information due to
various random and systematic errors.

• Any mechanisms not explicitly stated in text (or in pathway databases) are not represented. One common set
of mechanisms are “reverse effects”. For instance, there may be several known mechanisms for the positive
regulation of the amount of a given protein, but no explicit mention of the protein naturally degrading.

To address these challenges, we have developed a number of assembly procedures and implemented support for run-
ning an additional assembly pipeline consisting of these steps for EMMAA models, specifically to support dynamical
simulation. Similar to the generic knowledge assembly pipeline that is applied to each EMMAA model, these assem-
bly steps are still applied at the knowledge/statement level before generating a rule-base dynamical model from the
statements using the PySB model assembler.

To demonstrate this, we chose The Ras Machine model and configured an extended assembly pipeline with the fol-
lowing steps:

• Filter out complex formation statements, since they can lead to unconstrained polymerization unless additional
conditions are supplied.

• Filter to statements that are known to be direct, either based on annotations from pathway databases or deter-
mined from linguistic cues during text mining.

• Filter to high-confidence statements that have belief score > 0.95.

• Filter to the most specific version of statements in case a statement appears at multiple refinement levels.

• Filter strictly to genes in the Ras pathway (which are also the prior search terms around which The Ras Machine
is built).

• Apply a set of semantic filters: filter phosphorylations to ones where the subject is a kinase, filter to amount
regulation statements where the subject is a transcription factor, etc.

• Run the “Mechanism Linker” which applies logic over sets of statements to fill in missing information and
remove certain redundancies as follows:

– Find the most specific activity type known for each protein and “reduce” all active forms to that activity
type. For example, if a protein is known to have generic “activity”, but also “kinase” activity, and “kinase”
activity is the only known specific activity type, then all the generic “activity” states will be reduced to
“kinase” activity.

– Find the most specific modifications known for each protein and “reduce” all modifications to that form.

– Remove any activation statements that are redundant with respect to a modification and an active form
statement. (For instance, if we know that A activates B, and also that A phosphorylates B, and Phospho-
rylated B is active, then we can remove the redundant A activates B statement.

144 Chapter 6. ASKE-E Reports

EMMAA Documentation, Release 1.16.0

– Rewrite all agents that appear in an active position in a statement (e.g., A in the statement A activates B)
to be in one of their known active forms. For example, if we have the statement A activates B, and we
know that A is active when it’s bound to C, then the statement is rewritten to A bound to C activates B.

– Filter out inconsequential modifications and activations, in other words, remove any statements that mod-
ify the state of an agent in a way that doesn’t have any further downstream effect and is therefore incon-
sequential.

Having performed these steps, we were able to simulate the model using network-free stochastic simulation. Below is
an example simulation trace for the amount of MAP2K1 phosphorylated on the S222 site:

Supporting network-free simulation

Until recently, EMMAA only supported deterministic ODE-based simulation for models. The main limitation is that
ODE-based simulation requires fully defining the set of variables and equations representing system behavior up front.
This implies that a reaction network (from which ODEs can be derived) needs to be generated, where the reaction
network describes all biochemical reactions that change the amount or state of entities (typically proteins and small
molecules). However, reaction networks can be very large (and potentially infinitely large) due to the combinatorial
complexity of entities interacting with each other. (Consider for instance the trivial polymerization reaction where
some entity X has two binding sites each of which can bind X, resulting in chains of X of unlimited length).

Network-free, agent-based simulation overcomes this challenge since it doesn’t require enumerating all states up
front, rather, one can provide an initial mixture from which the state of the system evolves as reaction events happen
over time. To support this simulation mode, we integrated the Kappa simulator with EMMAA via the kappy Python

6.8. ASKE-E Month 10 Milestone Report 145

EMMAA Documentation, Release 1.16.0

package. We implemented the API to the Kappa simulator such that it is consistent with the previous ODE-based
simulator.

One specific example of a model which - due to combinatorial complexity - cannot be generated into a reaction network
but can be simulated using this network-free approach is the Ras Model. The example below shows simulations of
MAPK1 phosphorylated on T185.

Adaptive sample-size dynamical property checking

One property of stochastic network-free simulation is that each simulation trace is different, and given any qualitative
property, whether a trace satisfies that property or not can differ due to this stochasticity. So the question arises: how
many simulations should one do to conclude - assuming pre-specified statistical error bounds - that a given property
holds with at least a given probability. We integrated a sequential hypothesis testing algorithm with the property
checking surrounding network-free simulation which can decide (after each simulation) whether to stop or to perform
another simulation to determine the satisfaction of the property. This way, sample sizes are chosen adaptively and
automatically in a principled way.

In the future, we will work on integrating parametric uncertainty in EMMAA model analysis. In that case, even de-
terministic ODE-based simulations will be subject to uncertainty, and the same sequential hypothesis testing approach
will be applicable in that simulation mode too.

146 Chapter 6. ASKE-E Reports

EMMAA Documentation, Release 1.16.0

Intervention-based dynamical queries

One of the query modes we have planned to support involves interventions where the amount of a given entity is mod-
ulated and the effect on a specific readout is examined. We implemented a query specification schema to describe such
queries, implemented a new EMMAA Query UI tab for specifying these queries in and intuitive way, and integrated
the back-end simulation engine supporting setting up, running, and then evaluating the results of such queries.

In the example below, we asked whether SOS1 leads to the activation of KRAS in a dynamical sense. This is evaluated
by modulating the total amount of SOS1 between a high level (which can loosely model “overexpression”) and a
low level (which can loosely model “knock out”), and comparing the time course of active KRAS between the two
conditions. In this case, we find that active KRAS is substantially higher when SOS1 is present at a high level,
therefore the property is satisfied:

Integration with the Kappa dynamical modeling and analysis UI

The team behind the Kappa language and tool set has developed a powerful integrated development environment for
Kappa models using an easy-to-use web inteface which integrates panels for defining and modifying the model, and
examining static analysis and simulation-based dynamical analysis results: https://tools.kappalanguage.org/try.

The Kappa UI supports loading models directly from URLs which allows straightforward integration with EMMAA.
Namely, each EMMAA model (where this makes sense) is generated into a Kappa export after each daily model
update, and these exports come with a stable URL. We now added a link out to the Kappa UI for each model where
such an export is available, allowing users to perform analysis on that interface.

The screenshot below shows the Ras Model in the Kappa UI. On the left, the Kappa export of the model can be
edited directly. On the right, the contact map (one of the static analysis outputs) is shown, and in the bottom, warning
messages about “dead rules” (rules that are inconsequential from a dynamical perspective) can be browsed. Numerous
further tabs support a variety of other analysis modes.

6.8. ASKE-E Month 10 Milestone Report 147

https://tools.kappalanguage.org/try

EMMAA Documentation, Release 1.16.0

6.8.2 Improved EMMAA query UI and REST API

This month we made various changes to the EMMAA service to improve user experience for both users querying
models via the interactive web interface and through the REST API programmatically.

Having added intervention-based dynamical queries as described in the previous section, we now support four types
of queries. We updated the names of the query types to be more descriptive and added instructions on how to submit
and interpret the results for each of the query types using the EMMAA interactive query tool.

Over the last several months we reported adding various endpoints to the EMMAA REST API to facilitate integration
with the Uncharted UI. During this reporting period we extended and improved the REST API and added an automat-
ically rendered Swagger documentation that describes the methods, input requirements, and expected responses for
each endpoint. We grouped the endpoints into three categories corresponding to the goals for which they can be used
(retrieving EMMAA models’ metadata, getting latest models’ updates, and running EMMAA queries). The previous
/run_query endpoint that allowed running any type of query was replaced with four separate endpoints for each of the
query types for convinience and better validation of user input.

The documentation contains the descriptions and example values for each parameter that a given endpoint can ac-
cept. The interactive Swagger documentation also allows manually modifying the example input and trying out the
endpoints.

In addition, we provide examples and descriptions for responses to validate the output and facilitate the interpretation
of results.

6.8.3 Network representation learning for EMMAA models

Sets of INDRA statements such as those associated with each EMMAA model can be assembled into graph-like
data structures of decreasing granularity: directed graphs with typed edges, directed graphs without typed edges, and
ultimately, undirected graphs. Different network representation learning methods can be used for each data structure to
assign dense vectors to nodes (and edges, if applicable). These are useful for downstream machine learning tasks (e.g.,
clustering, classification, regression), link prediction, and entity disambiguation. Our goal is to use the representations
to investigate the similarities between nodes’ representations between the full INDRA database and each EMMAA

148 Chapter 6. ASKE-E Reports

EMMAA Documentation, Release 1.16.0

Fig. 6: Query page showing four types of queries, description and the form

model to identify context-specific nodes as well as to make recommendations for including or removing nodes from
each EMMAA model.

Building a preliminary NRL pipeline

There are both practical and theoretical considerations for using the highest granular directed graphs with typed edges
(i.e., knowledge graphs). Most of the associated methods, called knowledge graph embedding models (KGEMs),
suffer from issues in scalability. Because most useful biological networks are larger than the size supported, there
is still minimal theoretical insight into how the methods perform on biological networks, which have very different
topology to the semantic web datasets to which they are typically applied and evaluated.

Instead, we built a reproducible pipeline for assembling the full INDRA database and each EMMAA model into
directed graphs without typed edges at varying belief levels for application of the node2vec random walk embedding
model to generate 64-dimensional vectors in Euclidean space for each node.

Later, we will automate this pipeline to run automatically upon each update to the full INDRA Database and each
EMMAA model such that the latest information can be incorporated. Further, the results could be included in EMMAA
API endpoint that returns model-specific metadata for each node.

Comparing EMMAA models with background knowledge

We first investigated where nodes from each EMMAA model appear in the embedding space generated from the full
INDRA database with a belief greater than 60%. We used principal component analysis to project into 2-dimensional
space for visualization. Because of the formulation of the node2vec method, each features’ contributions to the overall
variance are more homogenous than typical feature sets. The first two principle components only explained ~35%

6.8. ASKE-E Month 10 Milestone Report 149

EMMAA Documentation, Release 1.16.0

Fig. 7: EMMAA REST API endpoints

150 Chapter 6. ASKE-E Reports

EMMAA Documentation, Release 1.16.0

Fig. 8: Example input and parameters description for Up/down-stream query endpoint

6.8. ASKE-E Month 10 Milestone Report 151

EMMAA Documentation, Release 1.16.0

Fig. 9: Example response and interpretation

152 Chapter 6. ASKE-E Reports

EMMAA Documentation, Release 1.16.0

of the variance. Background nodes are shown with low opacity in blue while EMMAA nodes are shown with high
opacity in orange.

Interestingly, there are some regions that are not covered by any EMMAA model. While this could be because of a
bias in the contexts covered by current EMMAA models, it might also lead to insight in underrepresented biology.

Identification of context-specific nodes

Next, we wanted to identify nodes with the most similar and most dissimilar topologies in the INDRA database and a
given EMMAA model. We hypothesize that the most similar nodes represent the most generic biology and the most
dissimilar nodes represent context-specific biology. We investigated the overlap between the k-nearest neighbors in
embedding space for each node in the INDRA Database with the k-nearest neighbors in the embedding space for each
EMMAA model. To account for the size differences in the INDRA database and much smaller EMMAA models,
we used a fractional k=0.05 and the set overlap coefficient, which is more appropriate for sets of different sizes. We
performed the same task on the embeddings generated based on several belief cutoffs.

The following chart shows that when the belief cutoff is increased, the shape of the overlap coefficient rank distribution
typically shifts towards higher overlap coefficients. Darker lines correspond to higher belief. Notably, this pattern does
not hold for the literature derived models (e.g., Pain Model). The RAS Model results should also be disregarded since
the statements there should have an axiomatic belief of 1.0, but are tagged via TRIPS so have a lower belief.

6.8. ASKE-E Month 10 Milestone Report 153

EMMAA Documentation, Release 1.16.0

The nodes in the long tail of these distributions hold the most potential for novelty but also the most liability for
irrelevance. Our next step is to build a minimal browser for looking into these nodes as having a human in the loop for
the investigation of these nodes at the boundaries of EMMAA models could be useful.

154 Chapter 6. ASKE-E Reports

EMMAA Documentation, Release 1.16.0

Towards an automated recommendation engine

Our ongoing work towards an automated recommendation looks at the neighbors of nodes in the EMMAA models
within the embedding space from the full INDRA Database to identify potential additions. We are investigate sev-
eral clustering algorithms and their classification counterparts as potential methods for scoring nodes for inclusion.
Similarly, we are investigating anomaly detection methods at can be used in reverse towards the same goal.

Later, we will return to the k-nearest neighbors analysis to identify nodes that could potentially be removed from a
given EMMAA model.

Improvements to pykeen

While node2vec performs well on biological networks due to the symmetry in the model formulation and the important
property of local community structure common to biological networks, we would still like to use more powerful
methods for network representation learning. We are making improvements to the pykeen package for knowledge
graph embeddings in order to make it more scalable and applicable for the directed graph with typed edges assembly
of INDRA statements. So far, we have made several improvements to its memory management on large graphs and
begun work integrating the accelerate for scaling across multiple GPUs.

6.9 ASKE-E Month 11 Milestone Report

6.9.1 Integration with ASKE modeling frameworks

We collaborated with other teams to decide on a unified modeling framework to simulate and visualize different models
built in ASKE the same way. As a result we designed a process to convert PySB reaction networks of EMMAA
models into the PetriNet Classic GroMEt format developed by University of Arizona team. The GroMEt structure
includes State and Rate junctions connected by wires. In the context of EMMAA models, State and Rate junctions are
represented by model species and reaction rates respectively. Wires include the connections from reactants to the rates
and from rates to products. After discussions with the University of Arizona and Uncharted teams on what metadata
is necessary for meaningful visualizations, we added custom metadata to GroMEts generated from EMMAA models
that includes mappings from State junctions to INDRA Agents and from Rate junctions to INDRA Statements and
PySB rules.

Generation of GroMEts is now deployed as a part of automated update pipeline and their daily updated JSON exports
are available for download on S3 and on the EMMAA dashboard. We also uploaded GroMEt exports for two different
EMMAA models (the MARM model and the Ras Machine 2.0 model) to the shared GitHub repo maintained by the
Galois team for the upcoming ASKE-E final demo.

6.9.2 BioCreative participation

The BioCreative challenge is a longstanding community effort to evaluate text mining systems applied to biology.
This year, BioCreative includes a special track for COVID-19 text mining tool interactive demos which focuses on
text mining-based tools specifically developed to support COVID-19 research efforts. We registered for this track with
a proposal on the EMMAA COVID-19 model titled “A self-updating causal model of COVID-19 mechanisms built
from the scientific literature”, and our proposal was accepted for participation. We also received some useful feedback
on how to improve the EMMAA model query interface and the statement browser interface which we subsequently
implemented (as described in this report). Going forward, we will continue to improve the EMMAA COVID-19 model
and surrounding features, and aim to highlight ways in which EMMAA goes significantly beyond just text mining and
knowledge assembly, encompassing also automated modeling and data analysis based on text mining results.

6.9. ASKE-E Month 11 Milestone Report 155

https://pykeen.readthedocs.io/en/latest/index.html#module-pykeen

EMMAA Documentation, Release 1.16.0

6.9.3 Improving the EMMAA model query interface

In the previous report we shared the updates on the addition of new query types and improvements in the interactive
query interface. This month we extended the tutorial on using the query UI. We added sections about navigating
different parts of query page and selecting the correct query type based on the scientific question and updated the
descriptions and examples for all supported types of queries.

Fig. 10: Part of updated query tutorial

We exposed the links to both written tutorials and video demonstations of the tool on the query page.

6.9.4 Improving the EMMAA statement browser

We extended the set of features for browsing all statements in a given EMMAA model. It can be often useful to focus
on one type of interaction when browsing or curating statements. To enable this, we added a filter by statement type
that is shown in the image below.

In addition to filtering statements by type from the all statements view, users can also click on any of the horizontal
bars on the statement types distribution plot on the EMMAA model dashboard to be redirected to a page displaying
statements filtered down to that type.

Previously we supported sorting the statements by the number of unique evidences they have and by the number of
paths they support. Recently we also added an option to sort statements by their belief score.

6.9.5 Using custom belief scorers for EMMAA models

During this period we have developed an approach to deploying custom probability models to estimate the reliability
(“belief”) of statements in EMMAA models. As part of our ongoing efforts to validate and improve the accuracy of
these belief estimates, we have developed and validated several machine learning models (e.g. logistic regression,
random forest) to empirically estimate belief based on a dataset of roughly 5,000 statements that we have manually
curated. A valuable feature of these models is that they can capture the role of features other than reader evidence

156 Chapter 6. ASKE-E Reports

EMMAA Documentation, Release 1.16.0

Fig. 11: Links to demos and tutorials from query page

Fig. 12: COVID-19 model statements filtered to Inhibition

6.9. ASKE-E Month 11 Milestone Report 157

EMMAA Documentation, Release 1.16.0

Fig. 13: Statement types distribution chart before clicking to open statements view

counts in estimating belief; for example, we have found that statement type and number of unique supporting PMIDs
are also informative. We have also extended this approach to include “hybrid” models that incorporate machine
learning for estimating reliability from text mining sources and a set of priors for curated databases.

We created a framework for deploying versioned, alternative belief models to S3 after training and subsequently
making use of them during the assembly of EMMAA models. The EMMAA model configuration now takes a user-
configurable parameter specifying which belief model to load and use. Statement belief estimates are now also dis-
played in the front-end and can be used to sort statements in the All Statements view (see screenshot below).

We are working to draw on additional statement evidences that are in the INDRA Database (but outside the scope of
the EMMAA model) to enhance estimates of belief. This way, a statement that may appear rarely in text for a specific
disease context can be corroborated by information appearing outside that context, such as in a pathway database or in
papers not incorporated by the EMMAA model. This will separate the technical estimate of a statement’s reliability
from its canonicalness in a specific context, allowing users to identify high-confidence extractions that may be novel
in the context of a particular disease.

To demonstrate these new developments, we computed belief estimates for the neurofibromatosis model in four dif-
ferent configurations: with the default belief model vs. a new, partly machine-learned “hybrid” model, and with
EMMAA-only evidences vs. evidences from both EMMAA and the INDRA DB. As shown in the figure below, the
inclusion of additional evidence from the INDRA DB shifts belief estimates to the right due to the addition of extra
evidence, while the hybrid model provides a more continuous stratification of belief than the default belief model. In
the upcoming period we will evaluate the use of this approach in other models and determine whether the new belief
estimates are well-calibrated.

6.9.6 Developments in relation extraction from text

We have previously reported on completing our goals to enable named entity recognition and grounding in the Reach
reading system for (1) viral proteins (2) human and non-human (including viral) protein chains and fragments, and have
developed new algorithms in INDRA for organism disambiguation for proteins in the context of a given publication.

This month, we continued our work on creating a training data set for recognizing causal precedence in text. The
goal is to find a set of positive and negative examples where a paper describes an A-B interaction and also a B-C
interaction, and an A->B->C causal chain is implied (in the positive case) or not implied (in the negative case). This
labeled data can then be used to train a classifier that can be run on elementary relation extractions to reconstruct
causal precedence relations. We have previously reported on our approach to automatically finding positive examples.
Since then, we have worked on an alternative approach to finding negative examples. First, we searched for papers in

158 Chapter 6. ASKE-E Reports

EMMAA Documentation, Release 1.16.0

Fig. 14: All statements view for the BRCA model, showing the orange belief badges on the right

6.9. ASKE-E Month 11 Milestone Report 159

EMMAA Documentation, Release 1.16.0

Fig. 15: Belief scores of statements in the EMMAA model, using the default belief model (left plots) or random-forest-
based hybrid model (right plots); and using only EMMAA evidence (top plots) or including evidences from the INDRA
DB (bottom plots).

160 Chapter 6. ASKE-E Reports

EMMAA Documentation, Release 1.16.0

which both the A-B and the B-C relationship could be found within a specified distance of each other. To improve the
quality/reliability of each example, we also implemented a filter to retain only A-B, B-C pairs where each is supported
by additional background evidence beyond the given paper (this helps eliminate text mining errors). We then reviewed
the results to curate positive vs negative examples. We found that the vast majority of examples remaining were
positive for causal precedence. This imples that proximity in text may often be sufficient to infer causal precedence
across A-B, B-C relations. We are investigating this further while continuing to develop an improved method for
finding negative examples.

• genindex

• modindex

• search

6.9. ASKE-E Month 11 Milestone Report 161

EMMAA Documentation, Release 1.16.0

162 Chapter 6. ASKE-E Reports

Python Module Index

e
emmaa.analyze_tests_results, 51
emmaa.answer_queries, 57
emmaa.aws_lambda_functions, 66
emmaa.aws_lambda_functions.after_update,

68
emmaa.aws_lambda_functions.model_manager_update,

67
emmaa.aws_lambda_functions.model_queries,

70
emmaa.aws_lambda_functions.model_stats,

69
emmaa.aws_lambda_functions.model_tests,

69
emmaa.aws_lambda_functions.model_updates,

67
emmaa.aws_lambda_functions.test_pipeline,

68
emmaa.aws_lambda_functions.test_stats,

69
emmaa.aws_lambda_functions.test_update,

71
emmaa.aws_lambda_functions.test_update_pipeline,

70
emmaa.aws_lambda_functions.update_lambda,

71
emmaa.aws_lambda_functions.update_pipeline,

66
emmaa.db, 62
emmaa.db.manager, 64
emmaa.db.schema, 62
emmaa.filter_functions, 80
emmaa.model, 42
emmaa.model_tests, 48
emmaa.priors, 58
emmaa.priors.cancer_prior, 59
emmaa.priors.gene_list_prior, 60
emmaa.priors.literature_prior, 58
emmaa.priors.prior_stmts, 61

emmaa.priors.reactome_prior, 60
emmaa.queries, 55
emmaa.readers, 61
emmaa.readers.aws_reader, 61
emmaa.readers.db_client_reader, 62
emmaa.statements, 41
emmaa.subscription, 72
emmaa.subscription.email_service, 75
emmaa.subscription.email_util, 77
emmaa.subscription.notifications, 72
emmaa.util, 78
emmaa.xdd, 72
emmaa.xdd.xdd_client, 72

163

EMMAA Documentation, Release 1.16.0

164 Python Module Index

Index

A
add_emmaa_annotations() (in module em-

maa.statements), 41
add_paper_ids() (emmaa.model.EmmaaModel

method), 43
add_result() (emmaa.model_tests.ModelManager

method), 48
add_statements() (emmaa.model.EmmaaModel

method), 43
add_test() (emmaa.model_tests.ModelManager

method), 49
add_user() (emmaa.db.manager.EmmaaDatabaseManager

method), 64
agent_from_gene_name() (in module em-

maa.priors.gene_list_prior), 60
answer_dynamic_query() (em-

maa.model_tests.ModelManager method),
49

answer_immediate_query() (em-
maa.answer_queries.QueryManager method),
57

answer_intervention_query() (em-
maa.model_tests.ModelManager method),
49

answer_open_query() (em-
maa.model_tests.ModelManager method),
49

answer_path_query() (em-
maa.model_tests.ModelManager method),
49

answer_queries() (em-
maa.model_tests.ModelManager method),
49

answer_queries_from_s3() (in module em-
maa.answer_queries), 57

answer_registered_queries() (em-
maa.answer_queries.QueryManager method),
57

applicable() (emmaa.model_tests.RefinementTestConnector

static method), 49
applicable() (emmaa.model_tests.ScopeTestConnector

static method), 50
applicable() (emmaa.model_tests.TestConnector

static method), 50
applicable_tests (em-

maa.model_tests.ModelManager attribute),
48

assemble_dynamic_pysb() (em-
maa.model.EmmaaModel method), 43

assemble_pybel() (emmaa.model.EmmaaModel
method), 43

assemble_pysb() (emmaa.model.EmmaaModel
method), 43

assemble_signed_graph() (em-
maa.model.EmmaaModel method), 44

assemble_unsigned_graph() (em-
maa.model.EmmaaModel method), 44

assembled_stmts (emmaa.model.EmmaaModel at-
tribute), 43

assembly_config (emmaa.model.EmmaaModel at-
tribute), 43

C
check() (emmaa.model_tests.StatementCheckingTest

method), 50
check_stmt() (in module emmaa.statements), 41
close_to_quota_max() (in module em-

maa.subscription.email_service), 75
ComparativeInterventionProperty (class in

emmaa.queries), 55
create_tables() (em-

maa.db.manager.EmmaaDatabaseManager
method), 64

D
date_str (emmaa.model_tests.ModelManager at-

tribute), 48
does_exist() (in module emmaa.util), 78

165

EMMAA Documentation, Release 1.16.0

drop_tables() (em-
maa.db.manager.EmmaaDatabaseManager
method), 64

DynamicProperty (class in emmaa.queries), 55

E
eliminate_copies() (emmaa.model.EmmaaModel

method), 44
EmailHtmlBody (class in em-

maa.subscription.notifications), 72
emmaa.analyze_tests_results (module), 51
emmaa.answer_queries (module), 57
emmaa.aws_lambda_functions (module), 66
emmaa.aws_lambda_functions.after_update

(module), 68
emmaa.aws_lambda_functions.model_manager_update

(module), 67
emmaa.aws_lambda_functions.model_queries

(module), 70
emmaa.aws_lambda_functions.model_stats

(module), 69
emmaa.aws_lambda_functions.model_tests

(module), 69
emmaa.aws_lambda_functions.model_updates

(module), 67
emmaa.aws_lambda_functions.test_pipeline

(module), 68
emmaa.aws_lambda_functions.test_stats

(module), 69
emmaa.aws_lambda_functions.test_update

(module), 71
emmaa.aws_lambda_functions.test_update_pipeline

(module), 70
emmaa.aws_lambda_functions.update_lambda

(module), 71
emmaa.aws_lambda_functions.update_pipeline

(module), 66
emmaa.db (module), 62
emmaa.db.manager (module), 64
emmaa.db.schema (module), 62
emmaa.filter_functions (module), 80
emmaa.model (module), 42
emmaa.model_tests (module), 48
emmaa.priors (module), 58
emmaa.priors.cancer_prior (module), 59
emmaa.priors.gene_list_prior (module), 60
emmaa.priors.literature_prior (module), 58
emmaa.priors.prior_stmts (module), 61
emmaa.priors.reactome_prior (module), 60
emmaa.queries (module), 55
emmaa.readers (module), 61
emmaa.readers.aws_reader (module), 61
emmaa.readers.db_client_reader (module),

62

emmaa.statements (module), 41
emmaa.subscription (module), 72
emmaa.subscription.email_service (mod-

ule), 75
emmaa.subscription.email_util (module), 77
emmaa.subscription.notifications (mod-

ule), 72
emmaa.util (module), 78
emmaa.xdd (module), 72
emmaa.xdd.xdd_client (module), 72
EmmaaDatabaseError, 66
EmmaaDatabaseManager (class in em-

maa.db.manager), 64
EmmaaModel (class in emmaa.model), 42
EmmaaStatement (class in emmaa.statements), 41
EmmaaTest (class in emmaa.model_tests), 48
english_test_results (em-

maa.analyze_tests_results.TestRound at-
tribute), 54

entities (emmaa.model_tests.ModelManager at-
tribute), 48

extend_unique() (emmaa.model.EmmaaModel
method), 44

F
filter_chem_mesh_go() (in module em-

maa.filter_functions), 80
filter_emmaa_stmts_by_metadata() (in mod-

ule emmaa.statements), 42
filter_indra_stmts_by_metadata() (in mod-

ule emmaa.statements), 42
filter_to_internal_edges() (in module em-

maa.filter_functions), 80
find_delta_hashes() (em-

maa.analyze_tests_results.Round method),
53

find_drugs_for_genes() (em-
maa.priors.cancer_prior.TcgaCancerPrior
static method), 59

find_drugs_for_genes() (in module em-
maa.priors.reactome_prior), 60

find_latest_emails() (in module emmaa.util), 78
find_latest_s3_file() (in module emmaa.util),

78
find_latest_s3_files() (in module emmaa.util),

79
find_nth_latest_s3_file() (in module em-

maa.util), 79
format_results() (in module em-

maa.answer_queries), 57
from_json() (emmaa.priors.SearchTerm class

method), 58
function_mapping (em-

maa.analyze_tests_results.Round attribute),

166 Index

EMMAA Documentation, Release 1.16.0

53

G
GeneListPrior (class in em-

maa.priors.gene_list_prior), 60
generate_signature() (in module em-

maa.subscription.email_util), 77
generate_stats_on_s3() (in module em-

maa.analyze_tests_results), 55
generate_unsubscribe_link() (in module em-

maa.subscription.email_util), 77
generate_unsubscribe_qs() (in module em-

maa.subscription.email_util), 78
get_agent_distribution() (em-

maa.analyze_tests_results.ModelRound
method), 51

get_agent_from_gilda() (in module em-
maa.queries), 57

get_agent_from_text() (in module em-
maa.queries), 57

get_agent_from_trips() (in module em-
maa.queries), 57

get_all_raw_paper_ids() (em-
maa.analyze_tests_results.ModelRound
method), 51

get_all_result_hashes() (em-
maa.db.manager.EmmaaDatabaseManager
method), 64

get_all_update_messages() (in module em-
maa.subscription.notifications), 73

get_applied_test_hashes() (em-
maa.analyze_tests_results.TestRound method),
54

get_assembled_entities() (em-
maa.model.EmmaaModel method), 44

get_assembled_statements() (in module em-
maa.model), 46

get_assembled_stmts_by_paper() (em-
maa.analyze_tests_results.ModelRound
method), 51

get_document_figures() (in module em-
maa.xdd.xdd_client), 72

get_document_objects() (in module em-
maa.xdd.xdd_client), 72

get_drugs_for_gene() (in module emmaa.priors),
58

get_email_subscriptions() (in module em-
maa.subscription.email_util), 78

get_english_statements_by_hash() (em-
maa.analyze_tests_results.ModelRound
method), 51

get_entities() (emmaa.model.EmmaaModel
method), 44

get_entities() (emmaa.model_tests.EmmaaTest
method), 48

get_entities() (em-
maa.model_tests.StatementCheckingTest
method), 50

get_entities() (emmaa.queries.PathProperty
method), 56

get_figures_from_objects() (in module em-
maa.xdd.xdd_client), 72

get_figures_from_query() (in module em-
maa.xdd.xdd_client), 72

get_genes_contained_in_pathway (in module
emmaa.priors.reactome_prior), 60

get_indra_stmts() (emmaa.model.EmmaaModel
method), 44

get_model_deltas() (in module em-
maa.subscription.notifications), 73

get_model_stats() (in module emmaa.model), 46
get_model_users() (em-

maa.db.manager.EmmaaDatabaseManager
method), 64

get_mutated_genes() (em-
maa.priors.cancer_prior.TcgaCancerPrior
method), 59

get_new_readings() (emmaa.model.EmmaaModel
method), 44

get_number_passed_tests() (em-
maa.analyze_tests_results.TestRound method),
54

get_number_raw_papers() (em-
maa.analyze_tests_results.ModelRound
method), 51

get_paper_ids_from_stmts() (em-
maa.model.EmmaaModel method), 44

get_paper_titles_and_links() (em-
maa.analyze_tests_results.ModelRound
method), 51

get_papers_distribution() (em-
maa.analyze_tests_results.ModelRound
method), 51

get_passed_test_hashes() (em-
maa.analyze_tests_results.TestRound method),
54

get_pathways_containing_gene (in module em-
maa.priors.reactome_prior), 60

get_queries() (em-
maa.db.manager.EmmaaDatabaseManager
method), 64

get_raw_statements_for_pmids() (in module
emmaa.priors.literature_prior), 58

get_registered_queries() (em-
maa.answer_queries.QueryManager method),
57

get_relevant_nodes() (em-

Index 167

EMMAA Documentation, Release 1.16.0

maa.priors.cancer_prior.TcgaCancerPrior
method), 59

get_results() (em-
maa.db.manager.EmmaaDatabaseManager
method), 64

get_s3_client() (in module emmaa.util), 79
get_send_statistics() (in module em-

maa.subscription.email_service), 76
get_statement_types() (em-

maa.analyze_tests_results.ModelRound
method), 52

get_statements_by_evidence() (em-
maa.analyze_tests_results.ModelRound
method), 52

get_stmt_hashes() (em-
maa.analyze_tests_results.ModelRound
method), 52

get_stmts_for_gene() (in module em-
maa.priors.prior_stmts), 61

get_stmts_for_gene_list() (in module em-
maa.priors.prior_stmts), 61

get_subscribed_queries() (em-
maa.db.manager.EmmaaDatabaseManager
method), 65

get_subscribed_users() (em-
maa.db.manager.EmmaaDatabaseManager
method), 65

get_temporal_pattern() (em-
maa.queries.DynamicProperty method),
56

get_total_applied_tests() (em-
maa.analyze_tests_results.TestRound method),
54

get_total_statements() (em-
maa.analyze_tests_results.ModelRound
method), 52

get_updated_mc() (em-
maa.model_tests.ModelManager method),
49

get_user_models() (em-
maa.db.manager.EmmaaDatabaseManager
method), 65

get_user_query_delta() (in module em-
maa.subscription.notifications), 74

GroundingError, 56

H
hash_response_list() (em-

maa.model_tests.ModelManager method),
49

I
is_internal() (in module emmaa.statements), 42

J
json_stats (emmaa.analyze_tests_results.ModelStatsGenerator

attribute), 52
json_stats (emmaa.analyze_tests_results.StatsGenerator

attribute), 53
json_stats (emmaa.analyze_tests_results.TestStatsGenerator

attribute), 55

L
lambda_handler() (in module em-

maa.aws_lambda_functions.after_update),
68

lambda_handler() (in module em-
maa.aws_lambda_functions.model_manager_update),
67

lambda_handler() (in module em-
maa.aws_lambda_functions.model_queries),
70

lambda_handler() (in module em-
maa.aws_lambda_functions.model_stats),
70

lambda_handler() (in module em-
maa.aws_lambda_functions.model_tests),
69

lambda_handler() (in module em-
maa.aws_lambda_functions.model_updates),
67

lambda_handler() (in module em-
maa.aws_lambda_functions.test_pipeline),
68

lambda_handler() (in module em-
maa.aws_lambda_functions.test_stats), 69

lambda_handler() (in module em-
maa.aws_lambda_functions.test_update),
71

lambda_handler() (in module em-
maa.aws_lambda_functions.test_update_pipeline),
70

lambda_handler() (in module em-
maa.aws_lambda_functions.update_pipeline),
66

last_updated_date() (in module emmaa.model),
47

load_config_from_s3() (in module em-
maa.model), 47

load_from_s3() (emmaa.model.EmmaaModel class
method), 44

load_sif_prior() (em-
maa.priors.cancer_prior.TcgaCancerPrior
method), 59

load_stmts_from_s3() (in module emmaa.model),
47

load_tests_from_s3() (in module em-
maa.model_tests), 50

168 Index

EMMAA Documentation, Release 1.16.0

M
make_changes_over_time() (em-

maa.analyze_tests_results.ModelStatsGenerator
method), 52

make_changes_over_time() (em-
maa.analyze_tests_results.StatsGenerator
method), 54

make_changes_over_time() (em-
maa.analyze_tests_results.TestStatsGenerator
method), 55

make_config() (em-
maa.priors.gene_list_prior.GeneListPrior
method), 60

make_curation_summary() (em-
maa.analyze_tests_results.ModelStatsGenerator
method), 52

make_date_str() (in module emmaa.util), 79
make_gene_statements() (em-

maa.priors.gene_list_prior.GeneListPrior
method), 60

make_html_report_per_user() (in module em-
maa.subscription.notifications), 74

make_model() (emmaa.priors.gene_list_prior.GeneListPrior
method), 60

make_model_delta() (em-
maa.analyze_tests_results.ModelStatsGenerator
method), 52

make_model_html_email() (in module em-
maa.subscription.notifications), 74

make_model_summary() (em-
maa.analyze_tests_results.ModelStatsGenerator
method), 52

make_paper_delta() (em-
maa.analyze_tests_results.ModelStatsGenerator
method), 52

make_paper_summary() (em-
maa.analyze_tests_results.ModelStatsGenerator
method), 52

make_prior() (emmaa.priors.cancer_prior.TcgaCancerPrior
method), 60

make_prior_from_genes() (in module em-
maa.priors.reactome_prior), 61

make_reports_from_results() (in module em-
maa.subscription.notifications), 74

make_search_terms() (em-
maa.priors.gene_list_prior.GeneListPrior
method), 60

make_search_terms() (in module em-
maa.priors.literature_prior), 59

make_stats() (emmaa.analyze_tests_results.ModelStatsGenerator
method), 52

make_stats() (emmaa.analyze_tests_results.TestStatsGenerator
method), 55

make_str_report_per_user() (in module em-

maa.subscription.notifications), 74
make_test_summary() (em-

maa.analyze_tests_results.TestStatsGenerator
method), 55

make_tests() (emmaa.model_tests.TestManager
method), 50

make_tests_delta() (em-
maa.analyze_tests_results.TestStatsGenerator
method), 55

mc_mapping (emmaa.model_tests.ModelManager at-
tribute), 48

mc_types (emmaa.model_tests.ModelManager at-
tribute), 48

mc_types_results (em-
maa.analyze_tests_results.TestRound at-
tribute), 54

model_to_tests() (in module emmaa.model_tests),
50

model_update_notify() (in module em-
maa.subscription.notifications), 75

ModelDeltaEmailHtmlBody (class in em-
maa.subscription.notifications), 72

ModelManager (class in emmaa.model_tests), 48
ModelRound (class in emmaa.analyze_tests_results),

51
ModelStatsGenerator (class in em-

maa.analyze_tests_results), 52

N
ndex_network (emmaa.model.EmmaaModel at-

tribute), 43
NotAClassName, 78

O
OpenSearchQuery (class in emmaa.queries), 56

P
passed_over_total() (em-

maa.analyze_tests_results.TestRound method),
54

path_stmt (emmaa.queries.OpenSearchQuery at-
tribute), 56

path_stmt_types (em-
maa.model_tests.ModelManager attribute),
48

PathProperty (class in emmaa.queries), 56
process_response() (em-

maa.model_tests.ModelManager method),
49

put_queries() (em-
maa.db.manager.EmmaaDatabaseManager
method), 65

Index 169

EMMAA Documentation, Release 1.16.0

put_results() (em-
maa.db.manager.EmmaaDatabaseManager
method), 65

pysb_to_gromet() (in module emmaa.model), 47

Q
Query (class in emmaa.db.schema), 63
Query (class in emmaa.queries), 56
query_config (emmaa.model.EmmaaModel at-

tribute), 43
QueryEmailHtmlBody (class in em-

maa.subscription.notifications), 73
QueryManager (class in emmaa.answer_queries), 57

R
read_db_doi_search_terms() (in module em-

maa.readers.db_client_reader), 62
read_db_ids_search_terms() (in module em-

maa.readers.db_client_reader), 62
read_db_pmid_search_terms() (in module em-

maa.readers.db_client_reader), 62
read_pmid_search_terms() (in module em-

maa.readers.aws_reader), 61
read_pmids() (in module em-

maa.readers.aws_reader), 62
reading_config (emmaa.model.EmmaaModel at-

tribute), 43
RefinementTestConnector (class in em-

maa.model_tests), 49
register_email_unsubscribe() (in module em-

maa.subscription.email_util), 78
register_filter() (in module em-

maa.filter_functions), 80
render() (emmaa.subscription.notifications.ModelDeltaEmailHtmlBody

method), 72
render() (emmaa.subscription.notifications.QueryEmailHtmlBody

method), 73
Result (class in emmaa.db.schema), 63
results_to_json() (em-

maa.model_tests.ModelManager method),
49

retrieve_results_from_hashes() (em-
maa.answer_queries.QueryManager method),
57

Round (class in emmaa.analyze_tests_results), 53
run_all_tests() (em-

maa.model_tests.ModelManager method),
49

run_assembly() (emmaa.model.EmmaaModel
method), 44

run_model_tests_from_s3() (in module em-
maa.model_tests), 50

run_tests() (emmaa.model_tests.TestManager
method), 50

run_tests_per_mc() (em-
maa.model_tests.ModelManager method),
49

rx_id_from_up_id (in module em-
maa.priors.reactome_prior), 61

S
save_assembled_statements() (em-

maa.model_tests.ModelManager method),
49

save_config_to_s3() (in module emmaa.model),
47

save_tests_to_s3() (in module em-
maa.model_tests), 51

save_to_s3() (emmaa.model.EmmaaModel method),
44

ScopeTestConnector (class in emmaa.model_tests),
49

search_biorxiv() (emmaa.model.EmmaaModel
static method), 44

search_elsevier() (emmaa.model.EmmaaModel
static method), 45

search_literature() (em-
maa.model.EmmaaModel method), 45

search_pubmed() (emmaa.model.EmmaaModel
static method), 45

search_terms (emmaa.model.EmmaaModel at-
tribute), 43

search_terms_from_nodes() (em-
maa.priors.cancer_prior.TcgaCancerPrior
static method), 60

SearchTerm (class in emmaa.priors), 58
send_document_search_request() (in module

emmaa.xdd.xdd_client), 72
send_email() (in module em-

maa.subscription.email_service), 76
send_query_search_request() (in module em-

maa.xdd.xdd_client), 72
send_request() (in module emmaa.xdd.xdd_client),

72
SimpleInterventionProperty (class in em-

maa.queries), 56
sort_s3_files_by_date_str() (in module em-

maa.util), 79
sort_s3_files_by_last_mod() (in module em-

maa.util), 79
StatementCheckingTest (class in em-

maa.model_tests), 50
StatsGenerator (class in em-

maa.analyze_tests_results), 53
stmts (emmaa.model.EmmaaModel attribute), 43
stmts_by_papers (em-

maa.analyze_tests_results.ModelRound at-
tribute), 51

170 Index

EMMAA Documentation, Release 1.16.0

strip_out_date() (in module emmaa.util), 79
StructuralProperty (class in emmaa.queries), 56
subscribe_to_model() (em-

maa.db.manager.EmmaaDatabaseManager
method), 65

T
TcgaCancerPrior (class in em-

maa.priors.cancer_prior), 59
test_config (emmaa.model.EmmaaModel attribute),

43
TestConnector (class in emmaa.model_tests), 50
TestManager (class in emmaa.model_tests), 50
TestRound (class in emmaa.analyze_tests_results), 54
tests (emmaa.analyze_tests_results.TestRound at-

tribute), 54
TestStatsGenerator (class in em-

maa.analyze_tests_results), 54
to_emmaa_stmts() (in module emmaa.statements),

42
to_json() (emmaa.model.EmmaaModel method), 45
to_json() (emmaa.priors.SearchTerm method), 58
tweet_deltas() (in module em-

maa.subscription.notifications), 75

U
up_id_from_rx_id (in module em-

maa.priors.reactome_prior), 61
update_email_subscription() (em-

maa.db.manager.EmmaaDatabaseManager
method), 66

update_from_disease_map() (em-
maa.model.EmmaaModel method), 45

update_from_files() (em-
maa.model.EmmaaModel method), 45

update_to_ndex() (emmaa.model.EmmaaModel
method), 46

update_with_cord19() (em-
maa.model.EmmaaModel method), 46

upload_function() (in module em-
maa.aws_lambda_functions.update_lambda),
71

upload_results() (em-
maa.model_tests.ModelManager method),
49

upload_to_ndex() (emmaa.model.EmmaaModel
method), 46

User (class in emmaa.db.schema), 62
UserModel (class in emmaa.db.schema), 63
UserQuery (class in emmaa.db.schema), 63

V
verify_email_signature() (in module em-

maa.subscription.email_util), 78

Index 171

	EMMAA Architecture and Approach
	Model Assembly and Updates
	Cancer types of interest
	Model availability
	Defining model scope
	Deriving relevant terms for a given type of cancer
	Updating the network
	Machine-reading
	Automated incremental assembly

	Meta-Model
	Initial specification of annotation guidelines
	EMMAA currently supports “does X…” queries for PySB models
	Annotations required for “what if” queries
	Annotations required for open-ended “relevance” queries

	Model Testing and Analysis
	Model test cycle deployed on AWS
	Test conditions generated automatically
	General EMMAA model testing framework
	Model queries from users
	Pre-registered queries and notifications

	Model Analysis Query Language
	Structural properties with constraints
	Path properties with constraints
	Simple intervention properties
	Comparative intervention properties

	EMMAA Dashboard
	EMMAA Models Page
	Link to statement details
	Model Tab
	Tests Tab
	Papers Tab
	Curation Tab
	Load Previous State of Model

	EMMAA Statement Evidence Page
	EMMAA All Statements Page
	EMMAA Individual Paper Page
	EMMAA Model Queries
	Which query type do I need?
	Source-target paths queries
	Source-target dynamics queries
	Temporal properties queries
	Up/down-stream paths queries
	Waiting for results
	Logging In and Registering a User
	Subscribing to a Query
	Email Notifications of Subscribed Queries

	Failing test/query result interpretation
	EMMAA Detailed Test or Query Results
	Results for Different Model Types
	Non-passing Tests

	EMMAA modules reference
	EMMAA Statement (emmaa.statements)
	EMMAA Model (emmaa.model)
	EMMAA Model Test Framework (emmaa.model_tests)
	Analyze model test results (emmaa.analyze_tests_results)
	Query classes (emmaa.queries)
	Process model queries (emmaa.answer_queries)
	Priors (emmaa.priors)
	Literature Prior (emmaa.priors.literature_prior)
	TCGA Cancer Prior (emmaa.priors.cancer_prior)
	Gene List Prior (emmaa.priors.gene_list_prior)
	Reactome Prior (emmaa.priors.reactome_prior)
	Querying Prior Statements (emmaa.priors.prior_stmts)

	Readers (emmaa.readers)
	AWS reader (emmaa.readers.aws_reader)
	INDRA DB client reader (emmaa.readers.db_client_reader)

	EMMAA’s Database (emmaa.db)
	The Database Schema (emmaa.db.schema)
	Database Manager (emmaa.db.manager)

	AWS model update and testing pipeline (emmaa.aws_lambda_functions)
	xDD client
	EMMAA’s Subscription Service (emmaa.subscription)
	Notifications functions (emmaa.subscription.notifications)
	Email Service (emmaa.subscription.email_service)
	Email Utilities (emmaa.subscription.email_util)

	Utilities (emmaa.util)
	Functions for node and edge filtering (emmaa.filter_functions)

	Configuring an EMMAA model
	First level fields of config.json
	Model update configuration
	Model testing configuration
	Model queries configuration
	Making tests from model configuration

	ASKE Reports
	ASKE Month 5 Milestone Report: Lessons Learned
	Automated model assembly: the challenge of defining scope and context
	Automated model analysis: benefits of automated model validation
	Test-driven modeling
	Exploiting the bidirectional relationship between models and tests

	ASKE Month 6 Milestone Report
	Making model analysis and model content fully auditable
	Including new information based on relevance
	Coarse-grained model checking of EMMAA models with directed graphs

	ASKE Month 7 Milestone Report
	Repositioning EMMAA within the ASKE framework of modeling layers
	Use cases for the EMMAA system (and ASKE systems in general)

	ASKE Month 9 Milestone Report
	Generalizing EMMAA: a proof-of-principle model of food insecurity
	Extending model testing and analysis to multiple resolutions
	Implementing an object model for model analysis queries
	Detecting changes in analysis results due to model updates

	ASKE Month 11 Milestone Report
	Deployment of multiple-resolution model testing and analysis
	User-specific query registration and subscription
	An improved food insecurity model

	ASKE Month 13 Milestone Report
	Related work for the EMMAA system
	System performance statistics

	ASKE Month 15 Milestone Report
	EMMAA Knowledge assemblies as alternative test corpora
	Time machine
	Dynamical model simulation and testing
	Towards push science: User notifications of newly-discovered query results

	ASKE Month 18 Milestone Report
	Expert curation of models on the EMMAA dashboard
	Viewing and ranking all statements in a model
	Email notifications
	A model of Covid-19
	Integration of content from UW xDD system
	Configurable model assembly pipeline

	ASKE-E Reports
	ASKE-E Month 1 Milestone Report
	Overall goals and use cases for the Bio Platform
	Integration plan for the Bio Platform
	Progress during the ASKE-E Hackathon
	Open Search model queries and notifications

	ASKE-E Month 2 Milestone Report
	Push science: EMMAA models tweet new discoveries and explanations
	Improving named entity recognition in text mining integrated with EMMAA models
	Making model tests and paths available for use by other applications

	ASKE-E Month 4 Milestone Report
	EMMAA Neurofibromatosis Models and NF Hackathon Prize
	Rapid initialization of EMMAA models from literature for two new diseases
	Downloading EMMAA models in alternative formats

	ASKE-E Month 5 Milestone Report
	Semantic filters to improve model analysis
	Model analysis exploiting ontological relationships
	Improved reading and assembly of protein chains and fragments
	Bio ontology optimized for visualization

	ASKE-E Month 6 Milestone Report
	Reading and assembly with context-aware organism prioritization
	Preparing for the stakeholder meeting
	Reporting curation statistics
	Reporting paper level statistics
	Integrating non-textual evidence with EMMAA models

	ASKE-E Month 7 Milestone Report
	Natural language dialogue interaction with EMMAA models
	Automatically generated text annotations in context
	Demonstrations at the stakeholder meeting
	Developing the EMMAA REST API for flexible integration

	ASKE-E Month 9 Milestone Report
	Integrating the COVID-19 Disease Map community model
	Notifications about general model updates
	Figures and tables from xDD as non-textual evidence for model statements
	Integration with the Uncharted UI
	Semantic separation of model sources for analysis and reporting
	Assembling and analyzing dynamical models
	Creating a training corpus for identifying causal precedence in text
	Knowledge/model curation using BEL annotations
	Formalizing EMMAA model configuration

	ASKE-E Month 10 Milestone Report
	Dynamical model analysis
	Improved EMMAA query UI and REST API
	Network representation learning for EMMAA models

	ASKE-E Month 11 Milestone Report
	Integration with ASKE modeling frameworks
	BioCreative participation
	Improving the EMMAA model query interface
	Improving the EMMAA statement browser
	Using custom belief scorers for EMMAA models
	Developments in relation extraction from text

	Python Module Index
	Index

